

UEFI PXE Boot Performance
Analysis

 February 2014

Li Ruth, Brian Richardson

Intel Corporation

UEFI PXE Boot Performance Analysis

ii

 Executive Summary

Network boot using the Preboot Execution Environment (PXE) is widely

supported by current Unified Extensible Firmware Interface (UEFI)

implementations. In large network deployments, boot performance is

critical. This document analyzes firmware and operating system (OS)

elements that impact UEFI network boot performance, and offers

suggestions for reducing boot time and removing network bottlenecks.

This document focuses on an audience of firmware engineers, BIOS

vendors, network engineers and ODM/OEM system engineers.

 UEFI PXE Boot Performance Analysis

 iii

 Contents

1 Using PXE with UEFI..1

2 Factors Affecting UEFI PXE Performance ..5

3 Tuning Network Boot Performance ..7

4 Performance Data from Sample Platform ...9

5 Summary .. 13

1

Using PXE with UEFI

Preboot Execution Environment (PXE) defines a method for booting computers using a

network interface, independent of local storage devices or installed operating systems
(OSs). On platforms with UEFI firmware, PXE is supported by a network stack in the
client firmware. The network’s DHCP provides a path to a boot server and network
bootstrap program (NBP), downloads it into the computer's local memory using TFTP,

verifies the image, and executes the NBP.

 In a Windows Deployment Services (WDS) environment, the NBP is provided
by wdsmgfw.efi.

 In a Linux environment, the NBP is provided by UEFI-enabled boot loaders
such as GRUB, GRUB2 or ELILO.

This document focuses on boot performance for the PXE Client in UEFI firmware, and

how network topology impacts PXE boot performance. Because the DHCP proxy
process contributes minimal overhead to the network boot process, analysis focuses
on the OS boot images delivered by TFTP, which can be up to 200 MB of data.

1.1 UEFI Networking

The UEFI Specification describes an interface between the OS and platform firmware,

and defines a general purpose network stack, including MNP, IP, TCP, UDP, and DHCP
Protocols. To support boot from network devices, the firmware makes use of Universal
Network Driver Interfaces (UNDIs) and protocols defined in the UEFI Specification:

 EFI_NETWORK_INTERFACE_IDENTIFIER_PROTOCOL (NII)

 EFI_SIMPLE_NETWORK_PROTOCOL (SNP)

 EFI_PXE_BASE_CODE_PROTOCOL (PXE)

The PXE protocol is used for network access and booting from a network image.

http://en.wikipedia.org/wiki/Path_(computing)
http://en.wikipedia.org/wiki/Preboot_Execution_Environment#Network_bootstrap_program#Network_bootstrap_program
http://en.wikipedia.org/wiki/Preboot_Execution_Environment#Network_bootstrap_program#Network_bootstrap_program

UEFI PXE Boot Performance Analysis

2

UEFI PXE Service

PXE Driver

MNP Driver

UNDI/NII

SNP

DHCPMTFTP

IP Stack

UDP

Figure 1: UEFI Network Stack Layer

Figure 1 illustrates the UEFI network layers related to PXE. The lower hardware level

(UNDI/NII) is an abstracted interface provided by the network hardware vendor. For
Intel platforms, the UNDI layer is provided by a UEFI Device Driver or by a PCI
Express Option ROM. The SNP layer wraps around the UNDI interface and provides a

packet level interface to the network adapter. The MNP layer provides a raw
asynchronous network packet I/O service, allowing multiple drivers and applications to
use the system network interfaces at the same time. The middle layer of the stack
provides general network services (IP, UDP, DHCP and MTFTP).

The EFI_PXE_BASE_CODE_PROTOCOL is layered on top of a UEFI Network stack

implementation. This protocol also

 Consumes EFI MTFTP4 and EFI MTFTP 6 protocols to provide the TFTP services

 Consumes EFI DHCP4 and EFI DHCP6 protocols to provide DHCP services

 Layers over EFI UDP4 and EFI UDP 6 protocols to provide UDP Read and Write
services to the network interface.

1.2 UEFI PXE with Microsoft* WDS*

Microsoft WDS* enables PXE compliant boot environments, starting with Microsoft

Windows Server 2003 R2.

Figure 2 is an overview of the Microsoft* WDS* PXE boot process.

 UEFI PXE Boot Performance Analysis

 3

ExitBootService

Starting Kernel
Switch to OS network stack
…...

Boot Time Run Time

UEFI PXE Service

UEFI PXE Driver

UEFI Network Card Driver

UEFI Network Stack

BMM/BDS

PXE BASE CODE PROTOCOL

Download and start
wdsmgfw.efi

Download Boot
Configuration Data

Store

Download
Boot.wim file

BootMgFw.efi
controls file
download
behavior

Download and start
bootmgfw.efi

wdsmgfw.efi
trigger file
download

Figure 2: UEFI PXE with Microsoft* WDS*

After System Power on, the UEFI platform firmware initiates the PXE boot process.
This requires firmware to enable the UEFI Network Stack and present a network boot
option in the Boot Manager Menu (BMM) or Boot Device Selection (BDS) phase. The
UEFI PXE Base Code protocol requests a network address via DHCP. Microsoft* WDS*
assigns a network address to the client, allowing the client to locate the boot server
and request the NBP (wdsmgfw.efi).

Once the NBP is downloaded, the client executes wdsmgfw.efi as the first stage of the

network boot process. The wdsmgfw.efi executable trigger file download for boot

loader (bootmgfw.efi), and boot loader downloads additional files, including boot

configuration data store and a RAMDISK image (boot.wim). The boot.wim file is over

200 MB for a standard client system, so downloading this file consumes most of the
PXE boot process.

After these files are downloaded to the client system, the WDS loader calls
ExitBootService() to stop UEFI Boot Services and transition to Runtime. The

Operating System (OS) kernel starts execution and takes over hardware management
from UEFI, including network stack operations

1.3 UEFI PXE with Linux

Unlike Microsoft* Windows*, Linux distributions have the option to support different
boot loaders with PXE support. The boot process is similar to the Microsoft* WDS*

implementation. Boot loaders used by various Linux distributions include ELILO, GRUB
or GRUB2. The next section describes using ELILO for UEFI PXE boot with Linux.

UEFI PXE Boot Performance Analysis

4

1.3.1 ELILO

Figure 3 UEFI PXE with Linux PXE Service

Figure 3 shows an overview of the ELILO PXE boot process using UEFI. It’s very
similar to the Microsoft* WDS* procedure, but with the Linux boot loader
(elilo.efi), the configuration file (elilo.conf), and the Linux kernel image and

initial ramdisk taking the place of the downloaded files. The kernel and ramdisk sizes

are variable, depending on configuration. Configuring SUSE SLE11 SP3 with a boot

image for the Intel Desktop Board DQ77MK UEFI 2.3.1 Development Kit used a 4 MB
kernel and 34 MB initial ramdisk.

 UEFI PXE Boot Performance Analysis

 5

2

Factors Affecting UEFI PXE Performance

Performance for UEFI PXE deployments is measured using client boot times. This

document focuses on two aspects of PXE boot performance:

 Eliminating network infrastructure problems

 Tuning network boot performance

PXE relies heavily on TFTP for file downloads, and large files can cause delays if the

network is not configured properly. Tuning the TFTP configuration may have a
significant impact on network boot performance. This paper also describes a
methodology for measuring boot performance, and how to configure an appropriate
test environment.

2.1 Methods for Measuring Network Boot
Performance

Measuring boot performance for UEFI PXE is similar to measuring boot performance
from a local disk. There are two boot time measurements to examine:

 Time1: Time between system reset vector and ReadyToBoot event (platform

initialization and boot environment setup)

 Time2: Time between ReadyToBoot and ExitBootService event (hand-off

to OS from the UEFI Boot Loader)

Systems compliant with the Advanced Configuration and Power Interface (ACPI)

Specification Revision 5.0 can use the Firmware Performance Data Table (FPDT) to
record this data. ACPI FPDT data is refreshed on every system reset, so it is important
to collect this data prior to system reset or shutdown.

Network download performance impacts the Time2 measurement. The platform

firmware uses the UEFI Network Stack for downloading boot files, based on the TFTP
protocol. The Microsoft* WDS* process relies more on the UEFI Network Stack.
Because it downloads larger files via TFTP, it is the primary example for our network
performance analysis. The default configuration for TFTP stream depth is dynamically
adjusted, but using BcdEdit you can adjust the TFTP stream depth for better network

performance.

The largest file downloaded is boot.wim, so the download time for this file is used as

an indicator for network performance. Network sniffer applications provide more
accurate time measurements.

UEFI PXE Boot Performance Analysis

6

2.2 Network Configuration

Note that network boot performance data is only meaningful in a specific network.

.configuration, one with the following variables:

Network bandwidth: Today’s Intel client platforms include wired Gigabit Ethernet

Controllers (1000 Mbps). The best network performance requires cabling and switch
infrastructure supporting Gigabit Ethernet (GbE).

Network switch: The performance of the network switch itself has an impact on boot
performance. Switches used for boot performance testing should be rated for GbE

bandwidth. Certification by an interoperability agency is highly recommended
(example: UNH-IOL testing for IPv6 and Gigabit Ethernet).

Server configuration: Even though this document focuses primarily on firmware
performance, the boot server configuration can severely impact PXE boot
performance. The TFTP protocol requires interaction between the client and server,

and often the client must wait for a server response. The server’s transfer rate can be
improved through optimizing TFTP parameters and sizing hardware requirements to
properly serve network clients.

PXE client configuration: The client’s system hardware configuration can affect boot

performance, but the platform BIOS also has a significant impact. Client systems
should use the latest UEFI UNDI driver for the Ethernet adapter and platform firmware
with an updated UEFI Network Stack.

Network background traffic: Naturally, a crowded network environment will
decrease the overall network boot performance. Excluding the impact of extra traffic

for optimal PXE boot performance requires a clean network environment.

https://www.iol.unh.edu/
https://www.iol.unh.edu/services/testing/ipv6/
https://www.iol.unh.edu/services/testing/ge/

 UEFI PXE Boot Performance Analysis

 7

3

Tuning Network Boot Performance

This section provides guidance to BIOS Vendors and OEM and ODM system designers

to optimize PXE boot performance.

BIOS Customization: Eliminate Unused Network
Modules

The UEFI Network Stack provided by EDK II uses a modular design. Refer to the UEFI

Specification (sections 2.6.2 & 2.6.3) for information on protocols required for
different scenarios.

Driver Profile for PXE Boot via IPv4: PXE boot over IPv4 requires the following
modules for a complete network stack:

 SNP

 MNP

 ARP

 IP4

 IP4CONFIG

 UDP4

 DHCP4

 MTFTP4

 PXE

These modules are provided by EDK II MdeModulePkg. This also requires the proper
UNDI driver for the networking hardware, which is provided by the adapter’s PCIe
Option ROM or UEFI Driver. If you are using an Intel Ethernet Adapter, the latest

drivers can be found at intel.com.

Driver Profile for PXE Boot via IPv4 and IPv6: If both IPv4 and IPv6 are required,
the following IPv6 network stack modules are required from the EDK II NetworkPkg:

 IP6

 UDP6

 DHCP6

 MTFTP6.

Also required is the PXE driver from NetworkPkg with support for both IPv4 and IPv6

(NetworkPkg/UefiPxeBcDxe), but the older PXE driver in MdeModulePkg must be

removed.

https://svn.code.sf.net/p/edk2/code/trunk/edk2/MdeModulePkg/Universal/Network/
http://www.intel.com/support/network/sb/CS-006333.htm
http://www.intel.com/support/network/sb/CS-006333.htm
https://svn.code.sf.net/p/edk2/code/trunk/edk2/NetworkPkg/
https://svn.code.sf.net/p/edk2/code/trunk/edk2/NetworkPkg/UefiPxeBcDxe/

UEFI PXE Boot Performance Analysis

8

3.1 Boot Policy: Eliminate Network Impact on System
Boot Performance

A well-designed Boot Device Selection (BDS) policy can also improve PXE boot

performance:

 Implement “fast boot” to optimize the boot path. Do not connect unnecessary
I/O devices in BDS.

 If the client boots first from PXE, put the network device’s boot option first in
the UEFI boot order. This avoids BDS connections to other boot options. If
there are multiple network device boot options, place the preferred device first

to avoid connecting and configuring other network devices.

 Network devices may publish two UEFI boot entries per Ethernet port: one for

IPv4 and one for IPv6. Put the correct entry at the top of the UEFI boot order,
based on the network topology.

3.2 Code Revision: Use Updated UEFI Drivers

The entire UEFI PXE stack contains the Ethernet adapter UNDI driver and firmware

UEFI Network Stack implementation. Updating these components can address known
performance issues from older revisions:

 Download the latest device drivers from intel.com when using Intel Ethernet
Adapters.

 The EDK II project has an open source UEFI Network Stack implementation
using components from the NetworkPkg and MdeModulePkg packages.

Intel offers UEFI Development Kit platforms for reference, based on Intel
motherboards running the latest UEFI platform firmware. These platforms are used for
UEFI testing and development, and contain updated versions of the Intel UNDI driver
and open-source UEFI Network Stack. More information can be found at the Intel UEFI

Community Resource Center.

3.3 BIOS Porting: Performance of System Services

The UEFI Network Stack relies on several firmware services, which may slow boot

performance if ported incorrectly:

 GetTime: The GetTime() runtime service is triggered to add a timestamp to

every TFTP DATA packet. This call interacts with the runtime clock (RTC), and,
if not optimized, may drastically slow TFTP download speeds.

 GetVariable and SetVariable: The UEFI Specification requires network

drivers to provide NVRAM variables for configuration information (see Section
24 and Section 26 for reference). This can trigger multiple calls to the
GetVariable() and SetVariable() services during PXE boot. Most variable

service implementations use System Management Mode (SMM) for security
purposes, which can add overhead if not properly optimized. Verify the

SMRAM cache is enabled (write-back mode) for optimal performance.

http://www.intel.com/support/network/sb/CS-006333.htm
http://uefidk.com/develop/development-kit-information
http://uefidk.com/develop/development-kit-information

 UEFI PXE Boot Performance Analysis

 9

4

Performance Data from Sample Platform

This chapter details the performance data gathered from a sample environment

configured using the Intel® Desktop Board DQ77MK UEFI 2.3.1 Development Kit. This
is an isolated test network, using one UEFI PXE Client and one Microsoft WDS* server
connected via a 1 GbE switch.

 PXE Client: Intel® Desktop Board DQ77MK UEFI 2.3.1 Development Kit

(BIOS revision SDV.MK.B3), Intel® Core™ i5-3550 Processor, 16 GB DDR3
RAM.

 Connected to the network via an on-board GbE adapter

 Microsoft* WDS Server*: Microsoft* Windows* 2012, Intel® Pentium® D
Processor 920, 3 GB DDR RAM.

 Connected to the network via an Intel PRO/1000 PM GbE adapter.

 Network Switch: HP Procurve Switch 6108 (GbE)

4.1 TFTP Performance with Microsoft* WDS*

Table 1 shows network download performance data using TFTP with Microsoft* WDS*.
The time to download boot.wim file is recorded, counted from the point the client

sends a TFTP_READ_REQUEST for the file to the client sending TFTP ACK, which

confirms receiving the last block (averaged across three PXE boot sessions).

The SDV.MK.B3 BIOS was tested with both IPv4 and IPv6. The boot.wim file is used

because it is the largest TFTP payload delivered to the UEFI PXE client. In our test
case, the boot.wim file size was 201 MB.

Table 1: Time measurements for downloading boot.wim

PXE Boot
Test

IWdsTransportTftpClient
WindowSize

IWdsTransportTftpClient
BlockSize

Average
Time (sec)

IPv4
(default)

Dynamic adjusted 1456 23.7053

IPv6
(default)

Dynamic adjusted 1456 29.0567

IPv4
(optimized)

50 1456 9.5382

IPv6
(optimized)

50 1448 9.3385

In our test case, Windows 2012 WDS started with the following parameter values:

http://uefidk.com/develop/workstation-development-kit
http://ark.intel.com/products/65516/Intel-Core-i5-3550-Processor-6M-Cache-up-to-3_70-GHz
http://www.hp.com/rnd/pdfs/datasheets/ProCurve_Switch_6108.pdf

UEFI PXE Boot Performance Analysis

10

 ramdisktftpblocksize = 1456

 ramdisktftpwindowsize = 4

 ramdisktftpvarwindow = Yes

The WindowsSize and BlockSize parameters are part of the Boot Configuration Data

(BCD) store on the Microsoft* WDS* server. The test was run using default values and
optimized values to demonstrate how server configuration impacts the TFTP transfer
rate. When using the default setting for dynamic configuration of WindowSize, the
value started at 4 and finally increased to 64. We captured ~4K TFTP ACK packets
during the process of downloading boot.wim file. The change in WindowSize value was

controlled by interaction between the loader and WDS server.

Note that the BlockSize value for IPv6 is smaller than for IPv4, to avoid extra IP

packet fragmentation.

Please refer to MSDN for more information on TFTP parameters.

4.2 Impact of GetTime() and SetVariable()

The performance cost for GetTime() and SetVariable() service can be measured by

making multiple interface calls to these services and calculating the average number.
The measurement is made from the UEFI Shell using a simple UEFI application. The
application calls the GetTime() and SetVariable() functions 1,000,000 times,

records the start and end time, then calculates and reports the average cost for each

function.

Using the Intel® Desktop Board DQ77MK UEFI 2.3.1 Development Kit (BIOS revision
SDV.MK.B3), the cost for GetTime() is 0.0367 microseconds and the cost to set a

Non-NV Variable (1024 bytes) through SetVariable() is 0.04 microseconds). Using the

same test method on the Intel® Server Board S2600CP4 UEFI 2.3.1 Development Kit
(BIOS revision SDV.CP.B4), the cost for GetTime() is 0.0365 microseconds and
SetVariable() is 0.168 microseconds.

4.3 UEFI PXE Boot Performance

Table 2 shows the overall UEFI boot performance using the ACPI FPDT method.

Table 2: PXE boot performance time

Performance Data PXE boot over IPv4
(seconds)

Normal boot
(seconds)

Reset End 0.021 0.021

OS Loader LoadImage Start 7.037 5.321

OS Loader StartImage Start 20.246 5.512

ExitBootServices Entry 40.363 8.861

ExitBootServices Exit 40.365 8.862

This table reports time for five checkpoints in the boot process:

http://msdn.microsoft.com/en-us/library/windows/desktop/hh448696(v=vs.85).aspx
http://uefidk.com/develop/workstation-development-kit
http://uefidk.com/develop/server-development-kit

 UEFI PXE Boot Performance Analysis

 11

 Reset End

 OS Loader LoadImage Start

 OS Loader StartImage Start

 ExitBootServices Entry

 ExitBootServices Exit

In our test case the PXE Boot process requires a system reset, which destroys current
ACPI FPDT data. This makes it impossible to test using a UEFI Shell Application or an
OS tool. To retrieve the FPDT data before it is lost on reset, we replaced the FPDT
module in the RELEASE image with a DEBUG version, including a module to output

FPDT data via serial console. The boot performance data was collected from the serial
log information.

The following example shows how to add the FPDT DXE driver to the platform’s DSC
file:

MdeModulePkg/Universal/Acpi/FirmwarePerformanceDataTableDxe/FirmwarePerf

ormanceDxe.inf {

<LibraryClasses>

DebugLib|MdePkg/Library/BaseDebugLibSerialPort/BaseDebugLibSerialPort.in

f

}

The time between ‘Reset End’ and ‘OS Loader LoadImage Start’ covers platform

initialization and boot environment setup (Time1, in section 2.1).. The time from ‘OS
Loader LoadImage Start’ to ‘ExitBootServices Exit’ (Time2, in section 2.1) covers
execution of the DHCP/PXE service and downloading multiple NBP images. Note the

large time differences between the PXE and normal boot (local drive) scenarios.

For a more detailed description of the FPDT fields see the ACPI Specification Revision

5.0a (‘Firmware Basic Boot Performance Data Record’).

http://acpi.info/spec50a.htm
http://acpi.info/spec50a.htm

UEFI PXE Boot Performance Analysis

12

 UEFI PXE Boot Performance Analysis

 13

5

Summary

This document focused on PXE Boot performance and provides design guidance on

how to obtain good PXE Boot performance for BIOS developers. To facilitate this topic,
we described the general process of PXE boot, and described the method of measuring
network performance. We listed possible components which impacts the performance
data and provided a benchmark performance data using one reference platform and

the suggested method.

UEFI PXE Boot Performance Analysis

14

Acknowledgement

Sincere thanks to Fu Siyuan, Zhang Chao and Wu Jiaxin for help setting up test
environments, working through test issues and collecting data for this document.

 UEFI PXE Boot Performance Analysis

 15

Reference Documents

Document Location

UEFI 2.3.1 Specification http://www.uefi.org/specs

Microsoft* Windows Deployment
Services

http://msdn.microsoft.com/en-
us/library/windows/desktop/dd379586(v=vs.85).a
spx

SUSE Linux Enterprise Server 11

SP2 for UEFI Clients Best Practices
(White Paper)

http://www.novell.com/site/docrep/2012/12/SUSE

_Linux_Enterprise_Server_11_SP2_for_UEFI_Clien
ts_Best_Practices

Advanced Configuration and Power
Interface (ACPI) Specification

http://www.acpi.info

Preboot Execution Environment
(PXE) Specification

ftp://download.intel.com/ial/wfm/pxespec.pdf

[RFC2131] Dynamic Host
Configuration Protocol, IETF, 1997

http://www.ietf.org/rfc/ rfc2131.txt

[RFC2132] DHCP Options and
BOOTP Vendor Extensions, IETF,
1997

http://www.ietf.org/ rfc/rfc2132.txt

[RFC 3315] Dynamic Host
Configuration Protocol for IPv6

(DHCPv6), July, 2003

http://www.ietf.org/rfc/rfc3315.txt

Trivial File Transfer Protocol –
TFTP

http://www.ietf.org/rfc/rfc1350.txt
http://www.ietf.org/rfc/rfc2347.txt
http://www.ietf.org/rfc/rfc2348.txt
http://www.ietf.org/ rfc/rfc2349.txt

http://www.uefi.org/specs
http://www.novell.com/site/docrep/2012/12/SUSE_Linux_Enterprise_Server_11_SP2_for_UEFI_Clients_Best_Practices
http://www.novell.com/site/docrep/2012/12/SUSE_Linux_Enterprise_Server_11_SP2_for_UEFI_Clients_Best_Practices
http://www.novell.com/site/docrep/2012/12/SUSE_Linux_Enterprise_Server_11_SP2_for_UEFI_Clients_Best_Practices
http://www.acpi.info/
ftp://download.intel.com/ial/wfm/pxespec.pdf
http://www.ietf.org/rfc/rfc3315.txt
http://www.ietf.org/rfc/rfc2347.txt
http://www.ietf.org/rfc/rfc2348.txt

UEFI PXE Boot Performance Analysis

16

Legal Disclaimer

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS.
NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL
PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL’S TERMS
AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY
WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO
SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO
FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT,
COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use
in medical, life saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

This paper is for informational purposes only. THIS DOCUMENT IS PROVIDED "AS IS" WITH NO

WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY,

NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY OTHERWISE

ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR SAMPLE. Intel disclaims all liability, including

liability for infringement of any proprietary rights, relating to use of information in this specification.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted

herein.

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its

subsidiaries in the United States and other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2014 Intel Corporation. All rights reserved.

	1 Using PXE with UEFI
	1.1 UEFI Networking
	1.2 UEFI PXE with Microsoft* WDS*
	1.3 UEFI PXE with Linux
	1.3.1 ELILO

	2 Factors Affecting UEFI PXE Performance
	2.1 Methods for Measuring Network Boot Performance
	2.2 Network Configuration

	3 Tuning Network Boot Performance
	3.1 Boot Policy: Eliminate Network Impact on System Boot Performance
	3.2 Code Revision: Use Updated UEFI Drivers
	3.3 BIOS Porting: Performance of System Services

	4 Performance Data from Sample Platform
	4.1 TFTP Performance with Microsoft* WDS*
	4.2 Impact of GetTime() and SetVariable()
	4.3 UEFI PXE Boot Performance

	5 Summary

