
SMI Transfer Monitor (STM)

User Guide

August 2015

Revision 1.00

ii

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR
IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT

AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY
WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL

PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY,
OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for

use in medical, life saving, life sustaining, critical control or safety systems, or in nuclear facility applications..

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the

absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for future
definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

The products described in this document may contain design defects or errors known as errata which may cause the product to

deviate from published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.
Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained

by calling 1-800-548-4725, or by visiting Intel's Web Site.

64-bit computing on Intel architecture requires a computer system with a processor, chipset, BIOS, operating system, device

drivers and applications enabled for Intel® 64 architecture. Performance will vary depending on your hardware and software
configurations. Consult with your system vendor for more information.

Intel® Virtualization Technology requires a computer system with an enabled Intel® processor, BIOS, virtual machine monitor
(VMM) and, for some uses, certain platform software enabled for it. Functionality, performance or other benefits will vary

depending on hardware and software configurations and may require a BIOS update. Software applications may not be
compatible with all operating systems. Please check with your application vendor.

No computer system can provide absolute security under all conditions. Intel® Trusted Execution Technology is a security
technology under development by Intel and requires for operation a computer system with Intel® Virtualization Technology, an

Intel Trusted Execution Technology-enabled processor, chipset, BIOS, Authenticated Code Modules, and an Intel or other

compatible measured virtual machine monitor. In addition, Intel Trusted Execution Technology requires the system to contain a
TPMv1.2 as defined by the Trusted Computing Group and specific software for some uses. See

http://www.intel.com/technology/security/ for more information.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and
other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2006-2015, Intel Corporation. All rights reserved.

 iii

Contents

1 Introduction ..8

1.1 Background ..8
1.2 Overview ...9
1.3 Rationale ... 10
1.4 Terminology ... 11
1.5 Related Documents ... 12
1.6 Document Conventions .. 12
1.7 Processor Architecture Support ... 12

2 Architectural Overview ... 14

2.1 Opt-in .. 14
2.1.1 BIOS Opt-in .. 14
2.1.2 MLE Opt-in ... 14

2.2 Resource Negotiation .. 15
2.3 Runtime Protection.. 15
2.4 Hardware ... 15
2.5 BIOS ... 16
2.6 MLE ... 17
2.7 STM... 17
2.8 Structure Packing ... 17

3 STM Image Format .. 18

3.1 StmHeaderRevision ... 19
3.2 MonitorFeatures .. 19
3.3 STM Initialization Fields ... 20
3.4 Reserved Field .. 20
3.5 StmSpecVerMajor.StmSpecVerMinor ... 20
3.6 StaticImageSize .. 20
3.7 PerProcDynamicMemorySize .. 21
3.8 AdditionalDynamicMemorySize ... 21
3.9 MSEG Size Calculation ... 21
3.10 StmFeatures... 21

3.10.1 StmFeatures.Intel64ModeSupported .. 21
3.10.2 StmFeatures.EptSupported ... 22
3.10.3 StmFeatures.BGI ... 22
3.10.4 StmFeatures.BGM .. 22
3.10.5 StmFeatures.MSR .. 22

3.11 NumberOfRevIDs .. 22
3.12 StmSmmRevIds .. 22

4 BIOS Management of STM .. 24

4.1 TSEG and MSEG ... 24
4.2 Configuring MSEG ... 24

4.2.1 MSEG Chipset Configuration ... 25
4.2.2 MSEG CPU Configuration .. 25
4.2.3 Populating MSEG with the STM.. 25

iv

4.3 Heap Extension to BIOS Data Table .. 26
4.3.1 Version ... 28
4.3.2 TxtSmmFeatureFlags ... 28
4.3.3 RequiredStmSmmRevId ... 29
4.3.4 BIOS Hosted TXT Components .. 29

5 STM Launch .. 35

5.1 IA32e mode STM .. 35
5.2 The STM launch process .. 35
5.3 SINIT-AC module handoff to MLE .. 36

5.3.1 CPU ... 36
5.3.2 PCR values in the presence/absence of an STM 37

5.4 Internal STM initialization .. 37

6 STM Runtime ... 39

6.1 CPU state ... 39
6.2 STM protection exceptions ... 45
6.3 SMRAM ranges and cache-ability .. 47

6.3.1 SMRR for Intel® Core™ i7 Processors and later 48
6.4 Monitor trap flag handling in STM ... 48
6.5 Performance Monitoring ... 48
6.6 Microcode Patch .. 48

7 STM Teardown ... 50

8 VMCALL Interfaces Between BIOS SMI Handler and STM .. 52

8.1 Optimizing BIOS Resources .. 52
8.2 Memory resources... 53

8.2.1 Basic rules for SMM guest memory visibility 53
8.2.2 StmMapAddressRange VMCALL ... 54
8.2.3 StmUnmapAddressRange VMCALL ... 56
8.2.4 StmAddressLookup VMCALL .. 57
8.2.5 StmReturnFromProtectionException VMCALL 59

9 VMCALL Interfaces Between MLE and STM .. 62

9.1 InitializeProtectionVMCALL() .. 62
9.2 StartStmVMCALL() .. 63
9.3 StopStmVMCALL() .. 65
9.4 ProtectResourceVMCALL() .. 66
9.5 UnProtectResourceVMCALL() .. 67
9.6 GetBiosResourcesVMCALL() ... 68
9.7 ManageVmcsDatabaseVMCALL() ... 69
9.8 ManageEventLogVMCALL() ... 71

10 SMRAM context handling .. 75

10.1 SMRAM state save map generation ... 75
10.1.1 STM generated SMRAM state save map.. 75
10.1.2 SMM_REV_ID .. 77

10.2 Asynchronous and synchronous SMI ... 77
10.2.1 Normal Synchronous SMI Traps .. 78
10.2.2 Synchronous SMI APIs ... 78

10.3 Domain protections ... 78
10.3.1 BIOS guaranteed access... 79

 v

10.3.2 Synchronous SMI during execution of protected software 79
10.3.3 State save area generation and propagation rules 80
10.3.4 Asynchronous SMIs and Protected Domains.................................. 82
10.3.5 I/O Instruction Restart ... 82
10.3.6 Domain type degradation rules ... 82
10.3.7 IA32_EFER handling .. 84
10.3.8 MLE root or guest extended register state 85

10.4 VMCS database... 85

11 Fatal error handling.. 87

12 Support non-TXT launch ... 89

Appendix A STM_RESOURCE_LIST .. 90

A.1 Overview .. 90

A.2 Resource types .. 91

A.2.1 STM_RSC_END .. 91

A.2.2 STM_RSC_MEM_DESC .. 91

A.2.3 STM_RSC_IO_DESC ... 92

A.2.4 STM_RSC_MMIO_DESC .. 93

A.2.5 STM_RSC_MSR_DESC .. 94

A.2.6 STM_RSC_PCI_CFG_DESC .. 95

A.2.7 STM_RSC_TRAPPED_IO_DESC .. 96

A.2.8 STM_RSC_ALL_RESOURCES_DESC .. 97

A.2.9 STM_REGISTER_VIOLATION_DESC .. 97

Appendix B VMCALL API Numbers ... 100

Appendix C Return codes ... 102

Appendix D STM TXT.ERRORCODE crash codes .. 104

Appendix E Event log .. 106

E.1 Overview .. 106

E.2 Event Logging Flow .. 109

Appendix F Debugging/ Development Functions ... 114

F.1 Overview .. 114

F.2 Commands .. 115

F.2.1 HandleBiosResourcesCmd ... 115

F.2.1.1 AddRuntimeResourcesFunc ... 115

F.2.1.2 ReadBiosResourcesFunc ... 116

F.2.1.3 ReplaceBiosResourcesFunc .. 116

F.2.2 AccessResourcesCmd ... 117

vi

F.2.3 LoadStmCmd... 118

Figures

Figure 3-1. STM Image Format .. 18
Figure 4-1. TSEG and MSEG .. 24
Figure 4-2. Example TXT_BIOS_COMPONENT_UPDATE .. 31
Figure 5-1. STM Launch Process .. 36
Figure 10-1. STM generated SMM_REV_ID ... 77

Tables

Table 2-1: Chipset registers and CPU MSRs .. 16
Table 4-1. BIOS Extended data in TXT heap.. 27
Table 6-1. 32-bit protection exception stack frame .. 46
Table 6-2. Intel 64 protection exception stack frame ... 46
Table 10-1. STM generated SMRAM state save .. 75
Table 10-2. Domain types/register scrubbing and propagation rules 81
Table 10-3. Asynchronous SMIs and Protected Domains ... 82
Table 10-4. Protected domain degradations .. 84
Table 11-1: STM Error Code Format ... 87

 vii

§

Introduction

8

1 Introduction

1.1 Background

Intel® TXT contains several features and is intended to provide protection against

several threat classes. While some features may be able to stand on their own, when
taken together, the whole is greater than the sum of the parts. This document

describes one of these features, namely the SMI Transfer Monitor.

Intel® TXT provides a mechanism to dynamically measure and launch a software
environment in a manner that does not extend a security dependency to the pre-

existing software environment. This Intel® TXT launched environment is known as the

Measured Launched Environment, or MLE.

SMM (System Management Mode) is a special-purpose operating mode of the
microprocessor. It is generally used for handling system-wide functions such as

processor power management, platform hardware configuration, and proprietary

features. The SMM environment is initialized by the BIOS prior to booting the
operating system and is entered at runtime when a System Management Interrupt

(SMI) is asserted. The SMI itself is neither visible to, nor maskable by the operating

system. It does not use the IDT but rather uses other SMM specific CPU mechanisms
to transfer control to the BIOS SMI handler. The SMI is often thought of as

“transparent” to the operating system.

A normal, non Intel® TXT enabled SMI handler begins execution in an environment
similar to real-address mode with the following exceptions: there are no privilege

levels, there is no address mapping and SMM can address up to 4GB of memory. The

SMI handler may use paging to extend its reach beyond 4GB if required. It has
complete access to all I/O and control over interrupts regardless of any protections

established by the OS.

The SMI handler is established by platform firmware long before the Intel® TXT

launch, persists into the post-launch runtime, and by default has full access to all
platform hardware.

In order to fulfill the Intel® TXT security goal that an MLE does not have a security

dependency on the pre-existing software environment, the SMI handler must be dealt
with.

There are fundamentally three options for satisfying this security goal:

1. Establish trust in the SMI handler.

2. Disable the SMI handler altogether when the MLE is running.

3. De-privilege the SMI handler such that it no longer can damage the integrity

of the MLE.

Option 1 is appropriate for platforms where the MLE security profile allows trust in the

BIOS and other system firmware, and the associated update mechanisms and

Introduction

 9

protections provided by the platform. The mechanisms for establishing trust in the

platform’s SMI handler are beyond the scope of this document.

Option 2 is sufficient from a security perspective, but platform design generally

requires an SMI handler for proper operation. This specification describes a

mechanism by which this protection mechanism is possible, but it is not expected that
it will be widely used.

Option 3 is the focus of this specification. To de-privilege the SMI handler, there must

be a Supervisor SMI Handler. That is, there must be another piece of software that

can maintain the protection policy and prevent the SMI handler from accessing
protected resources. At the same time, the SMI handler must have assurances that

any and all hardware accesses it makes will succeed to ensure proper operation of the

platform. Resolving this tension is the goal of this specification.

1.2 Overview

This Supervisor SMI Handler is known as the SMI Transfer Monitor (STM). The STM

mediates communication regarding platform resource requirements between the BIOS

SMI handler and the security requirements of the MLE and enforces runtime
protections of the MLE when the BIOS SMI handler is running.

The STM can be used only when the BIOS loads it into memory and allows it to be

initialized by setting a bit for all CPUs. This process of loading and setting the bit to
allow the STM to be initialized is called “STM opt-in”.

The negotiation for resources favors the BIOS. The SMI handler statically declares its

resource requirements to the STM, and the STM is required to honor this access
requirement list in its entirety. In other words, the STM must never block SMI handler

access to any resource on this list.

The MLE may deem certain resources as sensitive or private and request that the STM

protect these resources and exclude them from SMI handler access. The STM is
required to honor these requests when the resource isn’t already on the BIOS

resource declaration list. It must subsequently block SMI handler access to this

resource.

The STM must refuse a protection request from the MLE when the resource is on the

BIOS resource declaration list. The MLE may then make a policy decision regarding

how to proceed. It may be the case that the platform in question is not compatible
with that particular MLE.

Once configured, the STM is entered each time an SMI occurs. The STM then invokes

the BIOS SMI handler code in a VT environment such that the STM can protect system
resources from being observed or modified by the BIOS SMI handler in compliance

with the MLE security policy.

This document describes the interfaces, both static and dynamic, between the STM

and the BIOS SMI handler, between the STM and the MLE; and describes restrictions,
requirements, responsibilities, and interoperability of all three components. If written

in compliance with this specification, each of the three components can be supplied by

different parties without requiring any additional interfaces or side band channels.

Introduction

10

1.3 Rationale

The platform requires correct operation of the SMI handler in order to function. This

implies hardware based runtime protection of the SMI handler’s critical code and data
against non-SMM agents. In addition, the SMI handler may own security sensitive

information and code which it wishes to protect from non-SMM code. Therefore, the

SMI handler has needs for both integrity and confidentiality over its address space and
memory.

Similarly, the MLE has critical code and data which must also be safe from corruption

and snooping.

Due to the security need for BIOS SMI handler integrity, the SMI handler will not trust
arbitrary code for protection of its integrity and privacy. This is true for all platforms,

Intel® TXT enabled or otherwise.

Additionally, some Intel® TXT MLEs may consider BIOS to be an unwelcome intruder,
and will not trust the BIOS SMI handler with access that could affect MLE integrity or

privacy. While this may not be true for every Intel® TXT platform, it is expected to be

true for at least some high assurance Intel® TXT platforms.

Since both the BIOS SMI handler and the Intel® TXT MLE have similar requirements

and they are distrustful of each other, an intermediary that is trusted by both is

required to negotiate and enforce ownership of platform resources. The gist of the
STM is to provide this mediation service in a way that is acceptable to both the BIOS

SMI handler and the MLE.

Note that the STM also has integrity requirements, and trusts neither the BIOS nor the
MLE. When present, the STM runs with higher privilege than the host’s VMX root and

the BIOS SMI handler. The STM itself will have full access to all host visible platform

resources, whether owned by the SMI handler or the MLE. Therefore, both BIOS and

MLE must be able to ‘opt-in’ to the STM prior to granting it the highly privileged state
it occupies.

Unlike the BIOS SMI handler and the MLE, however, frequent changes to the STM are

not envisioned. Because of the infrequency of updates, is expected that using well
known STM hashes, public verification keys, and certificates are feasible. This will

facilitate a reasonable ‘opt-in’ policy with regard to the STM from both the BIOS and

the MLE’s point of view.

Introduction

 11

1.4 Terminology

Term Description

BIOS SMI handler The SMM code provided by the system firmware

MSEG In the upper portion of TSEG. The MSEG region is used for the STM.

MSR Model-Specific Register

MLE Measured Launched Environment – This is the software environment which has

been launched using the GETSEC(SENTER) process. The MLE image has been

measured (e.g. using SHA-1) and registered in the TPM. This term is also used

for any code operating in host (non SMM) memory when it is irrelevant whether

the code is operating as a VMX root or guest.

MLE root This is used for the code operating in the MLE in VMX root mode. This is often

called the host’s VMM.

MLE guest A guest created by the MLE root. This often called the host’s guest.

SINIT AC SINIT Authenticated Code

SMI System Management Interrupt

SMM guest The virtual machine the BIOS SMI handler executes in when invoked

from the STM

SMM System Management Mode

SMRAM Save State Region of memory where the SMM code can access the context of the thread

interrupted by the SMI.

SMX Safer Mode Extensions

STM SMI Transfer Monitor

TSEG A region of memory reserved for SMI handler code. MSEG is in the upper portion

of TSEG.

VM Virtual Machine

VMCALL VMCALL is a VMX instruction which causes a VMX guest to exit to the VMM.

Under special circumstances, it can be invoked from VMX root mode also.

VMCS Virtual Machine Control Structure

VMX Virtual Machine Extension

Introduction

12

1.5 Related Documents

http://www.intel.com/products/processor/manuals/

Intel® Trusted Execution Technology Software Development Guide

Trusted Execution Technology Overview

Trusted Execution Technology Architectural Overview

http://www.uefi.org/specs/download/UEFI_Spec_2_3_Errata_C.pdf/

Framework Intel® Trusted Execution Technology (Intel® TXT) SMI Transfer Monitor (STM)
Reference Code Design Specification and Integration Guide

1.6 Document Conventions

This document adheres to the following typographic convention

BEGIN - informative content – non-normative

As currently written there may be two classes of information contained in this
document. Non-normative content may be interspersed within this specification for

convenience to the reader. This non-normative content is demarked using shading, as
this paragraph demonstrates.

END - informative content – non-normative

1.7 Processor Architecture Support

This specification supports the following processor architectures:

- 5th Generation Intel® Core™ Processors

http://www.intel.com/products/processor/manuals/
http://download.intel.com/technology/security/downloads/315168.pdf
http://www.intel.com/technology/security/downloads/TrustedExec_Overview.pdf
http://www.intel.com/technology/security/downloads/arch-overview.pdf
http://www.uefi.org/specs/download/UEFI_Spec_2_3_Errata_C.pdf
http://www.intel.com/technology/security/
http://www.intel.com/technology/security/

Introduction

 13

§

Architectural Overview

14

2 Architectural Overview

2.1 Opt-in

The STM can only participate in the SMI if both the BIOS and the MLE opt-in to STM

operations. The decision as to whether or not to opt-in is based on trustable
measurements of the STM prior to STM operations.

2.1.1 BIOS Opt-in

The BIOS is responsible for loading the STM into SMRAM. It is expected that the BIOS

will ensure the STM’s identity and integrity are acceptable before copying it into
SMRAM and only if the STM passes appropriate BIOS checks will the BIOS opt-in to

the STM functionality. The BIOS STM opt-in is supported in hardware via a MSR bit

that is only writable from SMM. This bit must be set identically on all CPU threads.

This comprises the BIOS STM opt-in operation.

This opt-in does not directly enable the STM rather it simply states there is an STM

present that is acceptable to BIOS which may become operational later, only after the

MLE has completed its opt-in step.

There is no opportunity during the Intel® TXT or STM launch process for BIOS to re-

evaluate the STM image. Therefore, BIOS must protect the STM image, along with the

BIOS SMI handler itself, at all times prior to STM launch. This is normal SMRAM
protection and is done using available hardware SMRAM protection features.

2.1.2 MLE Opt-in

There are two pieces to MLE opt-in of STM. First is a simple bit in the MLE header,

indicating the MLE supports an STM. If this bit is not set, the SINIT-AC module will not
configure STM prior to passing control to the MLE.

The second is the MLE evaluation of the measurement of the STM, and subsequent

decision whether to continue the launch or not. The MLE obtains a trustable STM
measurement via the Intel® TXT launch process. This measurement is performed by

the SINIT-AC module and extended into PCR17.

The STM must be written such that TPM localities 2-4 and TXT private space registers

are isolated from the BIOS SMI handler at the time the SMI is re-enabled. This
enables the initial sealing secrets without the possibility of interference of the BIOS

SMI handler. For example, secrets sealed to known good PCR values are inaccessible

to other environments. If the launched environment is incorrect, the MLE may then
opt to tear-down the environment rather than continue the launch. It is important to

note that initial measurement of the MLE itself has similar properties.

Architectural Overview

 15

2.2 Resource Negotiation

The negotiation of resource allocation between the BIOS SMI handler and MLE is as

follows:

The BIOS produces a list of hardware resources that are required by the SMI handler.

The STM cannot deny the SMI handler access to any of the resources on this list.

The MLE requests protection of hardware resources that must be protected from the
SMI handler. The STM only denies these requests if it is in conflict with declared BIOS

resource requirements.

2.3 Runtime Protection

During runtime, the STM only enforces protections of MLE trusted resources. The BIOS

SMI handler continues to rely on the aforementioned hardware SMRAM protections to
provide protection from the MLE. The addition of the STM must not leak any of the

contents of SMRAM to non-SMM agents.

When the BIOS SMI handler is running under the supervision of an STM, any un-
granted hardware access will cause a VMEXIT to the STM. The STM will then compare

the trapped access with the MLE protection policy.

If the hardware access is precluded by the MLE protection policy, the STM must not
permit the access to continue. The STM architecture provides for a BIOS error handler

in this case, which will be invoked if the BIOS has registered one with the STM. If

there is no error handler registered, the STM must reset the system.

If the hardware access is permitted by the MLE protection policy, the hardware access

is allowed. Many STM performance optimizations are possible to minimize the number

of protection related VM exits. Generally, such optimizations are outside the scope of
this architecture document and are left to the design of the STM implementation.

The STM should exercise caution that it doesn’t inadvertently change system state in

the course of its operation, for example, modifying MSRs without restoring their

original values.

2.4 Hardware

The SMI handler relies on a combination of hardware features to provide the isolation

and protection from system software, be it an MLE, or a normal OS. This includes

memory isolation features in the memory controller that prevent the SMRAM from
being observed or modified by the OS or DMA agent, and an SMRR in the processor

that prevents non-SMM software from manipulating cache controls to gain access to

the SMRAM.

This does not change in the presence of an STM. In fact, the STM relies on these

hardware features to maintain its own integrity. The STM need not know the details of

this hardware, however, as the correct configuration will be verified and enforced via
the SINIT-AC module during the launch process. The hardware must provide locks for

all relevant configuration registers.

Architectural Overview

16

The registers listed here are for convenience only. Please refer to appropriate

hardware specifications for official definitions.

The following chipset registers and CPU MSRs are defined for the TXT SMM

architecture. They are used by the BIOS and the STM during the boot of the system.

Table 2-1: Chipset registers and CPU MSRs

Register Name Bits Unit Access Description

STS.STS.SEQ_IN_PROCESS bit 17 Chipset

TXT config

space

Read access by

Ring 0 code

Set by hardware when logical

CPUs are in SENTER or SEXIT

transition. Cleared by hardware

when state is synchronized.

IA32_SMM_MONITOR_CTL.VALID

0 CPU Read access by

any code; Write

access only during

SMM

Set by SMI handler to indicate an

STM is loaded in MSEG. Cleared

by SMI handler to indicate no

STM is present in MSEG.

IA32_SMM_MONITOR_CTL.Reserve 1

11 -3

63 -32

CPU

IA32_SMM_MONITOR_CTL.Bit2 2 CPU Read access by

any code; Write

access only during

SMM

Bit 2 determines whether

executions of VMXOFF unblock

SMIs under the default treatment

of SMIs and SMM. Executions of

VMXOFF unblock SMIs unless bit

2 is 1 (the value of bit 0 is

irrelevant).

IA32_SMM_MONITOR_CTL.MSEG_BASE

31-12 CPU Read access by

any code; Write

access only during

SMM

Bits 31:12 of the physical base

address of the MSEG memory

space. Bits 11:0 are implied and

are interpreted as 0.

TXT.ERRORCODE Chipset

TXT config

space

Read/write access

by Ring 0 code

TXT.CMD.SYS_RESET Chipset

TXT config

space

Read/write access

by Ring 0 code

2.5 BIOS

To support an STM, BIOS must do the following:

 Correctly configure SMRAM

 Load an STM image into MSEG

 Set the MSEG base address in the IA32_SMM_MONITOR_CTL.MSEG_BASE

field for each processor thread in the system

 Set the opt-in to STM operation via the IA32_SMM_MONITOR_CTL.VALID

bit for each processor thread in the system

Architectural Overview

 17

 Provide a TXT_PROCESSOR_SMM_DESCRIPTOR structure in SMRAM for

each processor thread in the system

 Support STM style entry points in the SMI handler

 Provide a SMI handler hardware resource requirements list

 BIOS extended data in TXT heap

BIOS may also optionally provide:

 Error handlers to help debug or resolve resource conflicts

 Independent update of STM image

2.6 MLE

To support an STM, the MLE must do the following:

 Indicate it is capable of supporting an STM

 Identify the presence of the STM

 Provide STM with dynamic updates to protection policy as resources are
added to the MLE’s TCB

 Start the STM

 Stop and tear down STM as part of taking down the trusted environment

 Reset the system or re-enable SMIs if the STM is not launched

2.7 STM

STM must implement the following:

 Caching support for BIOS SMI handler

 An interface used by the SMI handler to enable mapping MLE memory into

the SMI handler’s memory space (only when not protected)

 The interface used by the MLE to communicate with the STM

2.8 Structure Packing

All C structs in this specification are packed. There is no padding.

§

STM Image Format

18

3 STM Image Format

The figure below shows the format of the STM image when loaded in the MSEG

memory region. The STM image is loaded into the physically contiguous MSEG
memory region by the BIOS. Placement of the STM into non-MSEG memory may

conflict with other features.

The BIOS should implement some form of STM acceptability policy control regarding
the setting of the IA32_SMM_MONITOR_CTL.VALID bit. For example: If the STM is

stored in the system flash part and is protected via the normal BIOS update

protection, then the BIOS policy could be to simply accept any STM found in the flash.

On the other hand, if the STM were to be dynamically loadable (not currently
supported), the BIOS may implement a list of known good hash values for STM

images, or even implement a PKI scheme. Regardless of what BIOS policy is

implemented, care should be taken to avoid simply “giving SMM away” to unknown
arbitrary software.

IA32_SMM_MONITOR_CTL.BASE contains the physical address of the MSEG memory

region. The SINIT AC module will hash the static portion of the STM image and extend
this hash to the TPM.

Figure 3-1. STM Image Format

The structures below describe the STM header format. The static portion of the STM

image starts at the beginning of MSEG and continues for SwStmHdr.StaticImageSize

bytes. All fields in HwStmHdr are defined by the processor and are documented in the

Dynamic STM
code and data

Static STM code
and data

STM Header

MSEG

Top of Physical Memory

STM Image

STM Image Format

 19

Intel® 64 and IA-32 Architectures Software Development Manual. They are

documented here only for convenience.

typedef struct {

 UINT32 StmHeaderRevision;

 UINT32 MonitorFeatures;

 UINT32 GdtrLimit;

 UINT32 GdtrBaseOffset;

 UINT32 CsSelector;

 UINT32 EipOffset;

 UINT32 EspOffset;

 UINT32 Cr3Offset;

 UINT8 Reserved[FILL_TO_2K];

} HARDWARE_STM_HEADER;

typedef struct {

 UINT8 StmSpecVerMajor;

 UINT8 StmSpecVerMinor;

 UINT16 Reserved; // must be zero

 UINT32 StaticImageSize;

 UINT32 PerProcDynamicMemorySize;

 UINT32 AdditionalDynamicMemorySize;

 struct {

 UINT32 Intel64ModeSupported :1; // bitfield

 UINT32 EptSupported :1; // bitfield UINT32 BGI :1;

// bitfield

 UINT32 BGM :1; // bitfield

 UINT32 MSR :1; // bitfield

 UINT32 Reserved :27; // must be 0

 } StmFeatures;

 UINT32 NumberOfRevIDs;

 ...

 UINT32 StmSmmRevIDs[NumberOfRevIDs];

} SOFTWARE_STM_HEADER;

typedef struct {

 HARDWARE_STM_HEADER HwStmHdr;

 SOFTWARE_STM_HEADER SwStmHdr;

} STM_HEADER;

3.1 StmHeaderRevision

The StmHeaderRevision field identifies the revision number (and therefore the size,

structure and content) of the remainder of the hardware header. It should be checked

by software attempting to access the STM image (e.g. SINIT). It is checked by the
VMCALL instruction when invoked from VMX root, which will GPF# if the instruction is

not compatible with this specific header revision. In order to find the STM header

revision supported by the processor, one can read the IA32_VMX_MISC MSR.

3.2 MonitorFeatures

Bit 0 of the MonitorFeatures field is the IA-32e mode SMM feature bit. It indicates

whether the logical processor will be in IA-32e mode after the STM is activated.

While the processor allows for a 32 bit STM, this specification assumes IA-32e

operation. Therefore, bit 0 must be set.

STM Image Format

20

Bits 31:1 of the MonitorFeatures field are reserved and must be zero.

3.3 STM Initialization Fields

These fields describe the processor configuration settings to be used on all invocations
of the STM resulting from VMCALL from VMX root. The STM self-initialization process

will subsequently change these values as needed. All offsets are defined relative to the

MSEG base address.

GdtrLimit: this field contains the value to be loaded into the GDTR limit.

GdtrBaseOffset: this field contains the byte offset of the value to be added with

MSEG base and then loaded into the GDTR base.

CsSelector: this field contains the value to be loaded into CS when the STM is
initialized.

EipOffset: this field contains the byte offset of the value to be loaded into EIP when

the STM is initialized. The value loaded into EIP is a 32-bit value. This is the STM
initialization entry point.

EspOffset: this field contains the byte offset of the value to be loaded into ESP when

the STM is initialized. The value loaded into ESP is a 32-bit value.

Cr3Offset: this field contains the byte offset of the value to be loaded into CR3 when

the STM is initialized. The value loaded into CR3 is a 32-bit value.

3.4 Reserved Field

The reserved field is for future hardware use. Reserved Field size = 2K –
sizeof(previous fields in the STM header). This allows the software fields in the STM

header to start at offset 2K.

3.5 StmSpecVerMajor.StmSpecVerMinor

Indicates the STM specification version of the software header. Minor versions are

backward compatible within the scope of a major version with regard to structure and
functional compatibility. These fields are simply binary (not BCD). The version

corresponding to this specification is StmSpecVerMajor = 1h, StmSpecVerMinor = 0h.

3.6 StaticImageSize

The size, in bytes, of the static portion of the STM image. This includes the full STM
Header structure itself, the STM code image, and any pre-initialized data structures

included with the image. The static image will be hashed and registered during an

SMX launch.

The StaticImageSize field, and all subsequent fields of the STM header are “software

use only” fields and are used by SINIT. The hardware does not depend on these fields.

STM Image Format

 21

3.7 PerProcDynamicMemorySize

The minimum size, in bytes, required per processor to support the STM’s normal

execution. This specifically excludes the memory required for each processor's VMCS
structures but does include any other dynamic memory (e.g. heap, stack, etc.) that

must be allocated for each processor in the system. (The size of the VMCS varies with

the processor type. The number of VMCSs corresponds to the number of processors in
the system.)

3.8 AdditionalDynamicMemorySize

The maximum memory size, in bytes, required in addition to the per processor

dynamic memory, to support the STM’s normal execution.

3.9 MSEG Size Calculation

The total size required for MSEG can be calculated as follows:

MSEG_Minimum_Size =

SwStmHdr.StaticImageSize +

SwStmHdr.PerProcDynamicMemorySize * number of processors +

2 * VMCS size for this processor * number of processors +

SwStmHdr.AdditionalDynamicMemorySize

The following fields must be 4K aligned: SwStmHdr.StaticImageSize,
SwStmHdr.PerProcDynamicMemorySize, SwStmHdr.AdditionalDynamicMemorySize,

and the “VMCS size for this processor.”

BIOS is free to allocate more MSEG memory. SINIT will verify that the minimum MSEG
has been allocated. If MSEG is insufficient, the SMX launch will fail. SINIT will zero the

allocated dynamic area during an SMX launch. SINIT will not hash or extend the

allocated dynamic area. SINIT will also zero any remaining area within MSEG beyond
the end of the STM allocated memory.

Note that the VMCS size is obtained from the IA32_VMX_BASIC MSR (MSR index

0x480).

3.10 StmFeatures

This 32-bit field contains information about which features the STM implements with
regard to its SMM guest.

3.10.1 StmFeatures.Intel64ModeSupported

If set, this bit indicates that the STM supports 64-bit SMM guests and MLEs. STM

implementations that are compliant with this specification must set this bit.

STM Image Format

22

3.10.2 StmFeatures.EptSupported

If set, this bit indicates that the STM implements EPT and the SMM guest can control

its own CR3 and page tables. This is the recommended implementation on all
processors that support EPT.SMM.

3.10.3 StmFeatures.BGI

If set (1), indicates Byte Granular MMIO range support. If clear (0), indicates page

granular MMIO range support. See 12.

3.10.4 StmFeatures.BGM

If set (1), indicates Byte Granular Memory range support. If clear (0), indicates page

granular memory range support. See 12.

3.10.5 StmFeatures.MSR

If set (1), indicates bit granular MSR resource support. If clear (0), indicates whole

MSR granular resource support only. See 12.

3.11 NumberOfRevIDs

The number of revision IDs supported by this STM. The supported revision IDs are

contained in the StmSmmRevId array. The NumberOfRevIDs field must be 1 or greater.

3.12 StmSmmRevIds

Each field in the StmSmmRevIds array indicates the SMM revision IDs that this STM

supports. The StmSmmRevIds fields are defined as follows:

 31 30 18 17 16 15 8 7 0

1 Reserved 0 1 Major Minor

Bit 31 is always set for revision ID associated with the STM. Bits 30 to 18 are reserved

and must be 0. Bit 17 indicates support for SMBASE relocation capability – this bit

must be cleared to zero for STM generated SMM save states. Bit 16 must be set to 1
for STM generated save states – this bit indicates support for I/O instruction restart.

STM generated SMRAM save states must be backward-compatible through all minor

revisions within the domain of any given major revision. Major revisions are not
required to be compatible with each other. See section 10.1.1.

The intended use of this field is to enable software to select an STM that is compatible

with the platform in cases where the platform allows dynamic loading of an STM (not

currently supported.) The launching software will compare the RequiredStmSmmRevId

value read from the BIOS extended data in the TXT heap with the StmSmmRevId field

in the STM header. If the launching software cannot identify an STM that has the

STM Image Format

 23

same major revision and a minor revision greater than or equal to the

RequiredStmSmmRevId, then no STM can be loaded. It is also expected that the BIOS

will check the STM header when loading an STM to verify the STM satisfies any BIOS

requirement.

§

BIOS Management of STM

24

4 BIOS Management of STM

4.1 TSEG and MSEG

PC memory controller designs support several memory regions which can be reserved

for SMM use and hidden from all other operating modes. TSEG is one of these memory
regions, and while implementations vary to some degree, it is generally located near

the top of physical memory.

For Intel® TXT STM usage, the upper part of TSEG is subdivided by a region called
MSEG. The MSEG resides in the upper portion of TSEG and is owned and occupied by

the STM and related Intel® TXT data. The lower portion of TSEG that is not part of

MSEG is owned and occupied by the BIOS SMI handler code and data.

The following figure depicts a simplified memory map and shows the relationship
between TSEG and MSEG.

Figure 4-1. TSEG and MSEG

The system BIOS must ensure the TSEG space is sufficiently large to contain both the

BIOS SMM code and the STM. The STM size determines the MSEG size requirements.
The total size of TSEG is equal to the sum of the space required for the BIOS SMI

handler code, MSEG, and any space from the top of MSEG to the top of TSEG.

4.2 Configuring MSEG

As part of its normal boot up operation, BIOS establishes the SMI handler and locks
the SMRAM configuration state using a chipset-specific locking mechanism. Prior to

Top of TSEG

MSEG base TSEG

BIOS SMI
handler

STM

TSEG base

BIOS Management of STM

 25

locking the SMRAM configuration, BIOS must configure the MSEG region in the

chipset. Additionally, before handing off control to the operating system, BIOS must
populate the MSEG region with the STM image and program the

IA32_SMM_MONITOR_CTL MSR on each thread.

4.2.1 MSEG Chipset Configuration

The IA32_SMM_MONITOR_CTL.MSEG_BASE defines the lower bound of MSEG. The
upper bound of MSEG is defined in a product specific manner that is known to SINIT

and to BIOS but is not architecturally defined within the scope of this specification.

The calculation for determining the amount of MSEG space the STM requires is given

in section 3.9. Prior to locking down the SMM configuration registers, BIOS must
program these registers such that:

 IA32_SMM_MONITOR_CTL.MSEG_BASE (on each processor thread) is

aligned on a 4K boundary.

 The STM image is completely contained within MSEG

 MSEG is completely contained within TSEG

Any violation of these rules will cause the SINIT-AC module to write an appropriate
value to the TXT.ERRORCODE register, followed by a TXT.CMD.SYS_RESET to force a

system reset. See the appropriate SINIT-AC module release documentation for SINIT-

AC module error codes.

It is generally expected that the BIOS will carry the STM binary in the system flash

part, most likely in compressed form. Therefore, BIOS should be able to determine the

appropriate MSEG configuration settings prior to locking down the SMRAM
configuration.

4.2.2 MSEG CPU Configuration

In addition to the chipset registers, BIOS must program the CPU’s

IA32_SMM_MONITOR_CTL MSR (index 9BH). In a system with more than one CPU

socket, an Intel® multi-core processor, or a processor supporting Intel® Hyper-
Threading Technology (Intel® HT Technology), all processor threads must have

identical IA32_SMM_MONITOR_CTL MSR settings. Furthermore, these settings must

be consistent with chipset MSEG programming. For any SINIT-AC module supporting
an STM, an inconsistency between the IA32_SMM_MONITOR_CTL MSR on any logical

processor and the chipset’s MSEG registers will cause the SINIT-AC module to write an

appropriate value to the TXT.ERRORCODE register, followed by a write to
TXT.CMD.SYS_RESET to force a system reset.

4.2.3 Populating MSEG with the STM

Prior to passing control the OS loader, BIOS is expected to place the STM image into

the MSEG region. While it is likely that this will be done during TXT register
configuration, the only hard requirement is that this be done prior to the first

invocation of GETSEC[SENTER], which is likely after INT19h or the invocation of an

EFI OS loader. BIOS should take care to be sure it is not possible for an unknown STM

to be populated into the MSEG region.

BIOS Management of STM

26

Once BIOS has placed the STM image into MSEG and locked the SMM configuration,

BIOS must set IA32_SMM_MONITOR_CTL:VALID (bit 0) on all CPU threads to indicate
a valid STM is present in MSEG. This bit can only be written from SMM, and indicates

the BIOS opt-in to the STM residing in MSEG.

4.3 Heap Extension to BIOS Data Table

BEGIN - informative content – non-normative

#define HEAP_EXTDATA_TYPE_STM 4

typedef struct {

 UINT8 StmSpecVerMajor; /* <major>.<minor> current = 0x00010000 */

 UINT8 StmSpecVerMinor;

 UINT16 BiosSmmFlags;

 UINT16 StmFeatureFlags;

 UINT32 RequiredStmSmmRevId;

 UINT32 Reserved;

 UINT8 GetBiosAcStatusCmd;

 UINT8 UpdateBiosAcCmd;

 UINT8 GetSinitAcStatusCmd;

 UINT8 UpdateSinitAcCmd;

 UINT8 GetStmStatusCmd;

 UINT8 UpdateStmCmd;

 UINT8 Reserved[26];

} HEAP_BIOS_EXT_ELEMENT;

The STM data that was in the ITXT table will be instead presented as an
ExtDataElement. See HEAP_BIOS_EXT_ELEMENT above.

END - informative content – non-normative

BIOS allocates the TXT heap memory range and populates a portion of it with BIOS
specific values. This region is known as the TXT BIOS Data Table.

The STM relevant information is delivered to pre-launch software via a TXT Heap

Extended Data Element in the TXT BIOS Data Table. This extended data element is

used to declare some static information as well as a number of SMI-based interfaces
that can report the revisions of Intel® TXT platform software components (including

the STM) and independently update the Intel® TXT-related binaries carried by the

platform.

An IO port written by software that causes the chipset to generate an SMI is used to

invoke services from the BIOS that are declared in the STM extended data element.

The STM extended data element is optional and is not required for Intel® TXT platform
compatibility. However, if it is not present, pre-launch software has no way of

applying any pre-launch policy regarding platform-related Intel® TXT software

components. Nor is it possible to update any of the Intel® TXT platform software
components in a non-proprietary manner. Therefore, inclusion of the STM extended

data element is recommended.

Note that the interfaces and data declared in the STM extended data element are

informational only and should not be considered to have any security value. The ACPI

BIOS Management of STM

 27

Fixed ACPI Description Table (FADT) contains a field called SMI_CMD, which declares a

system IO port that will generate a synchronous SMI when it is written. The STM
Extended Data Element declares a set of values which can be written to the SMI_CMD

port for Intel® TXT and MSEG/STM management.

There are 32 possible commands defined by this table. Each byte value to write to the
SMI_CMD port is specified in one of 32 command slots at table offsets 14 through 45.

A value of zero indicates there is no command in that slot, or the command is not

supported. Therefore, supported commands have values between 0x01 and 0xFF.

Any command slot not explicitly defined by this specification is reserved and must
contain the value 0.

As with ACPI all defined writes to the SMI_CMD port, these writes to the SMI_CMD

port must be done by the bootstrap processor.

Table 4-1. BIOS Extended data in TXT heap

Field
Byte
Length

Byte
Offset Description

StmSpecVer

 Major 1 0 Major version of the STM Heap Element;

also serves to version this table.

 Minor 1 1 Minor version of the STM Heap Element;

also servers to version this table.

TxtSmmFeatureFlags

 BiosSmmFlags 2 2 Indicates BIOS SMI handler attributes.

 StmFeatureFlags 2 4 Indicates attributes of BIOS supplied

STM.

RequiredStmSmmRevId 4 6

Reserved 4 10 Reserved – must be 0

SMI_CMD Values

 GetBiosAcStatusCmd 1 14 The value to write to SMI_CMD to

determine BIOS AC module status.

 UpdateBiosAcCmd 1 15 The value to write to SMI_CMD to

update the BIOS AC module.

 GetSinitAcStatusCmd 1 16 The value to write to SMI_CMD to

determine SINIT-AC module status.

 UpdateSinitAcCmd 1 17 The value to write to SMI_CMD to

update the SINIT-AC module.

 GetStmStatusCmd 1 18 The value to write to SMI_CMD to

determine STM and MSEG status.

 UpdateStmCmd 1 19 The value to write to SMI_CMD to

update the STM.

 Reserved 20 20 Reserved, must be 0.

BIOS Management of STM

28

Field
Byte
Length

Byte
Offset Description

 ReservedForDebug 6 40 These six entries are reserved for use

by pre-production STM/BIOS functions.

They must be 0 in production systems,

but may support additional features to

facilitate development and debugging of

an STM in pre-production platforms.

4.3.1 Version

The StmSpecVer field is divided into Major and Minor subfields. The combination of
Major.Minor describes version of this STM specification to which the included STM is

compatible. It also implicitly specifies the layout of the STM Heap Element. The

structure above is represented by the Major.Minor value of 1.0.

All future minor revisions within the scope of a major revision must be backward
compatible. Future major revision changes indicate a compatibility break with regard

to the structure definition.

4.3.2 TxtSmmFeatureFlags

The TxtSmmFeatureFlags field is divided into two parts. The first 16 bits

(BiosSmmFlags) describe the BIOS SMI handler capabilities. The second 16 bits

(StmFeatureFlags) describe the capabilities of the STM that is present in MSEG.

4.3.2.1 BiosSmmFlags

The BiosSmmFlags field is defined as follows:

15 14 .. 1 0

0

L
M

S

If the LMS (Long Mode Support) bit is set, this indicates 64 bit operation is supported

by the BIOS SMI handler and all STM-to-BIOS entry points are long mode entry
points. If LMS is clear, then 64 bit operation is not supported and all STM-to-BIOS

entry points are 32 bit entry points.

4.3.2.2 StmFeatureFlags

This field is intended for use by pre-launch software to determine the capabilities of an
STM that is loaded in MSEG.

MLE root software should use the values returned from the

InitializeProtectionVMCALL(). See section 9.1.

The StmFeatureFlags field is defined as follows:

BIOS Management of STM

 29

15 14 .. 4 3 2 1 0

0

M

S

R

B

G

M

B

G

I

0

BGI: If set (1), indicates Byte Granular MMIO range support. If clear (0), indicates

page granular MMIO range support. See 12.

BGM: If set (1), indicates Byte Granular Memory range support. If clear (0), indicates

page granular memory range support. See 12.

MSR: If set (1), indicates bit granular MSR resource support. If clear (0), indicates
whole MSR granular resource support only. See 12.

4.3.3 RequiredStmSmmRevId

The RequiredStmSmmRevId field indicates the minimum STM revision the platform

requires. This field is only used if the platform supports dynamic loading of an STM by
software (not currently supported.) Software will compare the value of

RequiredStmSmmRevId with corresponding field in the STM header when selecting an

STM to load.

4.3.4 BIOS Hosted TXT Components

BIOS may manage a number of TXT relevant binaries: the BIOS AC module, the SINIT
AC module, and the STM binary. The following commands are all similar and consist of

a status and update API for each of these binary types. The parameters passed,

actions taken, and results returned are generally identical, only the image target itself
changes.

Related definitions:

#define SHA1 1

#define SHA256 2

typedef struct {

 UINT64 BiosComponentBase;

 UINT32 ImageSize;

 UINT32 HashAlgorithm; // SHA1 or SHA256

 UINT8 Hash[32];

} TXT_BIOS_COMPONENT_STATUS;

Hash contains the cryptographic hash of the image. The hash algorithm used is given

by HashAlgorithm.

#define PAGE_SIZE 4096

typedef struct {

 UINT32 ImageSize;

 UINT32 Reserved;

 UINT64 ImagePageBase[NumberOfPages];

} TXT_BIOS_COMPONENT_UPDATE;

BIOS Management of STM

30

The ImagePageBase[] field is an array of page aligned physical addresses, where the

image being passed in is broken into page sized blocks (except for the last page). The
image itself is reconstructed by BIOS by concatenating all pages in the image.

The total space for the image is given by ImageSize.

The total number of pages passed in is given by the following algorithm:

If (ImageSize % PAGE_SIZE == 0) {

 NumberOfPages = ImageSize / PAGE_SIZE

} else {

 NumberOfPages = ImageSize / PAGE_SIZE + 1

}

If TXT_BIOS_COMPONENT_UPDATE were constrained to fit entirely within one 4K page,

the maximum ImageSize would be 511 4K pages, which is slightly smaller than 2M.

Because 2M may not be sufficient for all future platforms,

TXT_BIOS_COMPONENT_UPDATE can be larger than one page. The last 8 bytes in each

page of a TXT_BIOS_COMPONENT_UPDATE structure are defined to be a physical pointer

to another page where the ImagePageBase[] field continues. If this link is not used,

the last 8 bytes of the page must contain zero. The last 8 bytes never contain an

element of ImagePageBase[]. If there are unused elements of ImagePageBase[]

array, these must be padded with zero until the end of the page. This allows chaining

of pages and arbitrarily large images to be passed in. See the example below:

BIOS Management of STM

 31

Figure 4-2. Example TXT_BIOS_COMPONENT_UPDATE

Page 2 of

TXT_BIOS_COMPONENT_UPDATE

ImageSize
Reserved

ImagePageBase[000]

ImagePageBase[509]

ImagePageBase[001]

to

ImagePageBase[508]

Link = address of page 2

ImagePageBase[510]

to

ImagePageBase[NumberOfPages-1]

Link = 000

(pad with 000)

Page 1 of

TXT_BIOS_COMPONENT_UPDATE

4.3.4.1 GetBiosAcStatusCmd

GetBiosAcStatusCmd returns data regarding the state of the BIOS ACM. While it

should be correct, no security or trust is implied with the data returned.

System software invokes GetBiosAcStatusCmd by writing the associated value to the

SMI_CMD port declared in the FADT ACPI table. A GetBiosAcStatusCmd value of zero

indicates this command is not supported and must not be attempted.

The GetBiosAcStatusCmd takes a 64-bit physical pointer to a caller-allocated

TXT_BIOS_COMPONENT_STATUS structure in ECX:EBX. This structure is used for output

only. The SMI handler must verify the requested output buffer is not within SMRAM.

Other than that, no input parameter or state checking by SMI handler is required.

Input registers:

EBX = low 32 bits of host physical address of caller-allocated

TXT_BIOS_COMPONENT_STATUS structure. The TXT_BIOS_COMPONENT_STATUS structure

itself is an output.

BIOS Management of STM

32

ECX = high 32 bits of host physical address of caller-allocated

TXT_BIOS_COMPONENT_STATUS structure. If TxtSmmFeatureFlags.LMS is clear, ECX

must be 0. The TXT_BIOS_COMPONENT_STATUS structure itself is an output.

Output registers:

CF = 0, EAX = SMM_SUCCESS: No error

CF = 1, EAX = ERROR_SMM_BAD_BUFFER: TXT_BIOS_COMPONENT_STATUS structure

overlapped SMRAM

CF = 1, EAX = ERROR_SMM_UNSPECIFIED: An unspecified error occurred.

All other registers unmodified.

4.3.4.2 UpdateBiosAcCmd

UpdateBiosAcCmd takes a BIOS AC image as a parameter and stores it in the platform

for subsequent use. The UpdateBiosAcCmd is intended to provide a facility for

updating the BIOS ACM without requiring a full BIOS update.

System software invokes UpdateBiosAcCmd by writing the associated value to the

SMI_CMD port declared in the FADT ACPI table. An UpdateBiosAcCmd value of zero

indicates this command is not supported and must not be attempted.

The UpdateBiosAcCmd takes a 64-bit physical pointer to a caller allocated

TXT_BIOS_COMPONENT_UPDATE structure in ECX:EBX. This structure indicates the

location of the new BIOS ACM to be written.

Input registers:

EBX = low 32 bits of host physical address of caller allocated

TXT_BIOS_COMPONENT_UPDATE structure.

ECX = high 32 bits of host physical address of caller allocated

TXT_BIOS_COMPONENT_UPDATE structure. If TxtSmmFeatureFlags.LMS is clear, ECX

must be 0.

Output registers:

CF = 0, EAX = SMM_SUCCESS: No error

CF = 1, EAX = ERROR_SMM_BAD_BUFFER: TXT_BIOS_COMPONENT_UPDATE structure or

BIOS AC image itself was not valid

CF = 1, EAX = ERROR_SMM_UNSPECIFIED: An unspecified error occurred.

4.3.4.3 GetSinitAcStatusCmd

GetSinitAcStatusCmd has the same semantics as GetBiosAcStatusCmd, except that
the target is the SINIT AC module rather than the BIOS AC module.

BIOS Management of STM

 33

4.3.4.4 UpdateSinitAcCmd

UpdateSinitAcCmd has the same semantics as UpdateBiosAcCmd, except that the

target is the SINIT AC module rather than the BIOS AC module.

4.3.4.5 GetStmStatusCmd

GetStmStatusCmd has the same semantics as GetBiosAcStatusCmd, except that the

target is the STM binary rather than the BIOS AC module.

4.3.4.6 UpdateStmCmd

UpdateStmCmd has the same semantics as UpdateBiosAcStatusCmd, except that the
target is the STM binary rather than the BIOS AC module.

BIOS Management of STM

34

§

STM Launch

 35

5 STM Launch

Pre-SENTER system software is responsible for invoking GETSEC[SENTER] to launch

the MLE. See the published Intel® Trusted Execution Technology documents for details
on this process.

5.1 IA32e mode STM

See “Enabling the Dual-Monitor Treatment” in the Intel® 64 and IA-32 Architectures

Software Development Manual for details regarding the MSEG header.

Bytes 7:4 of the MSEG header contain the SMM-monitor features field. Bits 31:1 of

this field are reserved and must be zero. Bit 0 of the field is the IA-32e mode SMM

feature bit. If set, it indicates the logical processor will be in IA-32e mode after the

STM is activated.

This architecture assumes IA-32e mode operation for a TXT launched STM. Therefore,

the IA-32e mode SMM feature bit must be set. This allows for interoperation with both

32 bit and 64 bit host environments, and 32 bit and 64 bit BIOS environments.

To facilitate STM bootstrapping, the initial STM pages must be identity mapped. The

initial STM page tables are generated by SINIT and populated by SINIT into 6

contiguous pages within the STM’s image. The location of these six pages is indicated
by the CR3 offset field in the MSEG header. The space for these six pages must not be

within the measured portion of MSEG. Rather, the CR3 offset should be in the dynamic

range. This is necessary to avoid measurement of these pages, since they are not
actually part of the STM. (See section 3.) These initial page tables will identity map all

memory between 0-4G. SINIT is free to choose any format of page table that is

compatible with IA32e mode and fits within 6 contiguous pages. Subsequent execution
of the STM is free to modify the page tables as necessary within the bounds of IA32e

paging.

5.2 The STM launch process

There are several basic steps to enabling and configuring an STM:

Perform normal TXT launch of MLE via SENTER.

BEGIN - informative content – non-normative

The flow is included in this specification since the behavior of the SINIT-AC module is
relevant to the MLE.

Prior to transferring control to the MLE, the SINIT-AC module will perform the following

actions depicted below in the flow chart related to the STM.

STM Launch

36

Figure 5-1. STM Launch Process

START
SINIT Begins

Checks

Is
ILP.IA32_SMM_MONIT

OR_CTL VALID?

SINIT: Extend 20 bytes of 0 to PCR 17

Ensure all RLPs are in proper hand-off
state.

EXITAC and WAKEUP leave SMIs enabled
on all threads.

Execute jump to MLE entry point on ILP
with SMIs enabled on all threads.

no

MLE: execute
GETSEC[SMCTRL]
on all threads to

enable SMIs

yes

no

Does MLE
support an

STM ?

SINIT: Extend 20 bytes of 0 to PCR 17

Ensure all RLPs are in proper hand-off
state.

Execute jump to MLE entry point on ILP
with SMIs disabled on all threads.

Does SINIT
support an

STM?

yes

no

SINIT:
Compute and extend STM measurement to PCR 17.

Populate Page Tables to identity map all memory below
4GB. Ensure all RLPs are in proper hand-off state.

Execute jump to MLE entry point with SMIs on all
threads disabled.

MLE verifies:

For all RLPs, that RLP.IA32_SMM_MONITOR_CTRL ==
ILP.IA32.SMM_MONITOR_CTRL.

and verifies that IA32_SMM_MONITOR_CTRL.VALID ==
SinitMleData.MsegValid

Perform other MLE required actions (e.g. unseal, query
ILP.IA32_SMM_MONITOR_CTRL.VALID, etc)

MLE Checks
Pass?

MLE invokes InitializeProtection on one thread.
MLE invokes StartSTM Vmcall on all threads to
allow the STM to configure itself.
The STM resumes the MLE with SMIs enabled
and being processed by the STM.

no

no

Is
MSEG_HEADER

correct?

yes

yes

yes

STM not configured.

SINIT Resets
Platform

No STM
Configured. SMIs

enabled.

STM Successfully
Configured and
handling SMIs

STM not
configured.

SMIs
enabled.

END - informative content – non-normative

5.3 SINIT-AC module handoff to MLE

5.3.1 CPU

The CPU state on entry into the MLE and early MLE bring-up is described in the TXT

Software Development Guide. The only significant difference introduced by the STM is

that when all SINIT-AC module STM checks pass (indicating there is an STM ready for
configuration present in memory), SMIs are masked when the MLE gets control.

STM Launch

 37

5.3.2 PCR values in the presence/absence of an STM

SINIT measures the STM into PCR[17]. See the MLE Writer’s Guide for details.

Establishing initial trust in the STM is similar to establishing trust in the MLE and is
beyond the scope of this specification.

5.4 Internal STM initialization

This process begins when the MLE root invokes InitializeProtectionVMCALL() and

ProtectResourceVMCALL() to initialize and create the MLE protection profile. Once
these steps have been completed, the MLE root invokes StartStmVMCALL() on all

processors. When the StartStmVMCALL() returns execution control to the MLE, the

STM will have been configured and started, and will be servicing SMIs. See section 9.1

for details.

During configuration, the STM will perform the following steps:

1. Initialize resource list data structures (InitializeProtectionVMCALL())

2. Build MLE protection profile (ProtectResourceVMCALL())
3. Initialize operational VMX data structures and take control of SMIs

(StartStmVMCALL()):

a) Rendezvous all CPUs
b) Enable caching of TSEG (if not automatic via SMRR)

c) Create two VMCS structures for each CPU. One for the SMM guest and one

for the MLE. If the CPU supports it, set the “Save VMX-preemption timer
value” bit in the VM-Exit Controls of the VMCS that the STM creates for the

MLE. Note: The STM should exercise caution over setting up the VMCSs

and not trust the values from the MLE’s VMCS. For example, STM should
set correct value for VM-exit MSR-load/VM-entry MSR-load/VM-exit MSR-

store. If those fields are NOT used, STM should zero out them.

d) Launches the SMM guest using the entry point described by the

TXT_PROCESSOR_SMM_DESCRIPTOR.SmmStmSetupRip (if specified) for each

CPU as defined by BIOS.

e) Disable caching of TSEG (if not automatic via SMRR)

f) Launch host software guest with SMIs enabled and STM configured. The
STM enables SMIs by clearing the “Blocking By SMI” bit (bit 2) in the

GUEST_INTERRUPTIBILITY VMCS field (Encoding 0x4824H) for the VMCS

that the STM created for its MLE guest. The STM returns control to the
MLE via VMLAUNCH.

Subsequent SMIs will be delivered to the STM, which will forward the SMIs to the SMI

handler via a VMRESUME to the TXT_PROCESSOR_SMM_DESCRIPTOR.SmmSmiHandlerRip.

STM Launch

38

§

STM Runtime

 39

6 STM Runtime

6.1 CPU state

Prior to configuring an Intel® TXT STM environment, the BIOS SMM code located in

TSEG services SMIs directly. After an Intel® TXT STM environment has been
configured, the BIOS SMM code continues to service SMIs, but runs within a virtual

machine (SMM guest) hosted by the STM.

When the BIOS SMI handler runs in the context of an STM-hosted VM, it uses a
paged, protected mode entry point for VM entry, rather than the traditional, big-real

mode SMI entry point. The STM uses the paging features to exclude MLE protected

pages from BIOS SMI handler access.

Since the SMM guest runs in protected mode with paging enabled (CR0.PE=1 and
CR0.PG=1), it must not attempt to clear CR0.PE or CR0.PG. Attempts by the SMM

guest to clear CR0.PE or CR0.PG must be blocked by the STM and will result in a

protection exception (see below for discussion of protection exceptions) and the STM
logging a control register violation (if specified in the event bitmap) in the Event Log

The BIOS declares the SMM guest entry state for each processor via a

TXT_PROCESSOR_SMM_DESCRIPTOR data structure that is located in SMRAM at SMBASE

+ 0xFB00.

The STM shall refer to the IA32_SMBASE MSR to determine the location of SMBASE.

Except for the SmramToVmcsRestoreRequired and ReinitializeVmcsRequired bits

which are evaluated on every RSM, the STM uses these data only when setting up the
VMCS structures for each processor prior to the initial launch of the SMM guest and

does not re-evaluate TXT_PROCESSOR_SMM_DESCRIPTOR for each SMI. Therefore, other

than the SmramToVmcsRestoreRequired and ReinitializeVmcsRequired bits, these

data should be considered static and not be modified by the BIOS during runtime.

typedef struct {

 UINT64 Signature;

 UINT16 Size;

 UINT8 SmmDescriptorVerMajor;

 UINT8 SmmDescriptorVerMinor;

 UINT32 LocalApicId;

 // The following byte defines SMI handler entry state

 struct {

 UINT8 ExecutionDisableOutsideSmrr : 1; // bitfield

 UINT8 Intel64Mode : 1; // bitfield

 UINT8 Cr4Pae : 1; // bitfield

 UINT8 Cr4Pse : 1; // bitfield

 UINT8 Reserved1 : 4; // bitfield

 } SmmEntryState;

 // The following byte defines data passed back to STM on RSM

 struct {

STM Runtime

40

 UINT8 SmramToVmcsRestoreRequired : 1; // bitfield - BIOS restore hint

 UINT8 ReinitializeVmcsRequired : 1; // bitfield - BIOS request

 UINT8 Reserved2 : 6; // bitfield

 } SmmResumeState;

 // the following byte defines inputs from STM to SMI handler

 struct {

 UINT8 DomainType : 4; // bitfield - STM input to BIOS on each SMI

 UINT8 XStatePolicy : 2; // bitfield – STM input to BIOS on each SMI

 UINT8 EptEnabled : 1; // bitfield

 UINT8 Reserved3 : 1; // bitfield

 } StmSmmState;

 UINT8 Reserved4;

 UINT16 SmmCs;

 UINT16 SmmDs;

 UINT16 SmmSs;

 UINT16 SmmOtherSegment;

 UINT16 SmmTr;

 UINT16 Reserved5;

 UINT64 SmmCr3;

 UINT64 SmmStmSetupRip; // optional, may be zero

 UINT64 SmmStmTeardownRip; // optional, may be zero

 UINT64 SmmSmiHandlerRip;

 UINT64 SmmSmiHandlerRsp;

 UINT64 GdtPtr;

 UINT32 GdtSize;

 UINT32 RequiredStmSmmRevId;

 STM_PROTECTION_EXCEPTION_HANDLER StmProtectionExceptionHandler;

 UINT64 Reserved6;

 UINT64 BiosHwResourceRequirementsPtr;

 UINT64 AcpiRsdp;

 UINT8 PhysicalAddressBit;

} TXT_PROCESSOR_SMM_DESCRIPTOR;

typedef struct {

 UINT64 SpeRip;

 UINT64 SpeRsp;

 UINT16 SpeSs;

 struct {

 UINT16 PageViolationException : 1; // bitfield

 UINT16 MsrViolationException : 1; // bitfield

 UINT16 RegisterViolationException : 1; // bitfield

 UINT16 IoViolationException : 1; // bitfield

 UINT16 PciViolationException : 1; // bitfield

 UINT16 Reserved1 : 11; // bitfield

 };

 UINT32 Reserved2;

} STM_PROTECTION_EXCEPTION_HANDLER;

#define TXT_PROCESSOR_SMM_DESCRIPTOR_SIGNATURE \ // ‘TXTPSSIG’

 ((‘G’ << 56) | \

 (‘I’ << 48) | \

 (‘S’ << 40) | \

 (‘S’ << 32) | \

 (‘P’ << 24) | \

 (‘T’ << 16) | \

 (‘X’ << 8) | \

 (‘T’))

#define TXT_PROCESSOR_SMM_DESCRIPTOR_VERSION_MAJOR 1

#define TXT_PROCESSOR_SMM_DESCRIPTOR_VERSION_MINOR 0

STM Runtime

 41

#typedef enum {

 TXT_SMM_PAGE_VIOLATION=1,

 TXT_SMM_MSR_VIOLATION,

 TXT_SMM_REGISTER_VIOLATION,

 TXT_SMM_IO_VIOLATION,

 TXT_SMM_PCI_VIOLATION

} TXT_SMM_PROTECTION_EXCEPTION_TYPE;

Signature must be set to TXT_PROCESSOR_SMM_DESCRIPTOR_SIGNATURE.

Size Indicates the size in bytes of the TXT_PROCESSOR_SMM_DESCRIPTOR.

SmmDescriptorVerMajor and SmmDescriptorVerMinor indicate the version

(specification compatibility) of the TXT_PROCESSOR_SMM_DESCRIPTOR structure. Minor

versions in a given major version number are backwards compatible. They share the
same access semantics and any new fields in the data structure are appended to the

end. Major versions are not backwards compatible and may have differences in the

TXT_PROCESSOR_SMM_DESCRIPTOR data structure and access semantics from the

previous major version. For the data structure described here, the

SmmDescriptorVerMajor value must contain the value

TXT_PROCESSOR_SMM_DESCRIPTOR_VERSION_MAJOR (1). Future specifications may re-

define the remainder of the structure and its access semantics by changing the major

version in SmmDescriptorVerMajor. System software must check this version number

before assuming the format of the rest of this data structure. Any future revisions to

the TXT_PROCESSOR_SMM_DESCRIPTOR data structure must update the version values in

a manner that is monotonically increasing with the previous version and must also

update the Size appropriately.

LocalApicId Indicates which processor the TXT_PROCESSOR_SMM_DESCRIPTOR instance

is associated with. On platforms that support x2APIC, this corresponds to the
x2APIC ID. On platforms that don’t support x2APIC, this corresponds to the initial

local APIC id which is stored in the low byte of the LocalApicId with the upper 3

bytes cleared to 0.

ExecutionDisableOutsideSmrr If set, this indicates the BIOS SMM code never

executes code outside of the SMRR so it is safe to prevent execution by BIOS SMI

handler in all non-SMRAM pages. The STM must enforce this policy.

Intel64Mode Indicates the SMI handler is an Intel 64 enabled handler and all entry

points are 64 bit code. This bit corresponds to IA32_EFER.LME.

Cr4Pae Indicates the SMI handler uses PAE. This bit must be set if Intel64Mode is set,

since when EFER.LME is set PAE must also be enabled. If Intel64Mode is clear, this
bit is used to determine whether BIOS uses 32 bit paging, or PAE paging.

Cr4Pse Indicates the BIOS SMI handler uses PSE. Ignored unless 32 bit paging is used

(both Intel64Mode and Cr4Pae are clear)

SmramToVmcsRestoreRequired The SMI handler sets this bit in order to indicate to the

STM that a change to SMRAM state save has been made that needs to be

propagated back to the interrupted context’s VMCS and process register state. If

this bit is not set by the SMM guest, the STM will not attempt to propagate any
changes the SMI handler has made to the SMRAM state save area to the

interrupted context’s VMCS or process register state. This bit is evaluated by the

STM Runtime

42

STM after every RSM prior to resuming the interrupted context. This bit is always

cleared by the STM on all threads prior to resuming the interrupted context.

ReinitializeVmcsRequired The SMI handler sets this bit in order to indicate to the

STM that upon the next SMI the full BIOS VMCS state should be initialized.

Therefore, if on entry into the STM this bit is set, the STM will re-initialize the

BIOS VMCS based on the contents of the TXT_PROCESSOR_SMM_DESCRIPTOR.

However, if on entry into the STM this bit is clear, the STM will re-initialize only

RIP and RSP. This bit must be set by the POST BIOS to ensure the STM will

properly initialize the BIOS VMCS on the first SMI handled by the STM. This bit is
cleared by the STM after every RSM prior to resuming the interrupted context.

DomainType The STM indicates to the BIOS SMI handler what SMRAM state save area

scrubbing policy has been applied. In all cases, the SMM_REV_ID fields of the
SMRAM state save area are valid. Consult section 10.3.3 for additional details.

XStatePolicy Indicates the active extended register state access policy. Values are

XSTATE_READWRITE, XSTATE_READONLY, and XSTATE_SCRUB. See section 9.7 for

details.

EptEnabled Indicates if STM enabled EPT for SMM guest. If EPT is enabled, BIOS is

allowed to modify CR3 and control its page tables directly. The state of this bit

must be consistent across all processors and must not change between SMI
events.

SmmCs Indicates the initial value of CS on entry to the SMM guest. SmmCs must contain

a valid selector for the GDT referenced by SmmGdtPtr.

SmmDs Indicates the initial value of DS on entry to the SMM guest. SmmDs must

contain a valid selector for the GDT referenced by SmmGdtPtr.

SmmSs Indicates the initial value of SS on entry to the SMM guest. SmmSs must

contain a valid selector for the GDT referenced by SmmGdtPtr.

SmmOtherSegment Indicates the initial value of ES, FS, and GS on entry to the SMM

guest. SmmOtherSegment must contain a valid selector for the GDT referenced by

SmmGdtPtr.

SmmTr Indicates the initial value of TR. SmmTr must contain a valid selector for the

GDT referenced by GdtPtr.

SmmCr3 Indicates the initial value of CR3. SmmCr3 must contain the initial value of

CR3 that will be used by the STM when setting up the VMCS that represents the

SMI handler

SmmStmSetupRip A SmmCs based 64-bit offset which contains the SMM guest entry

point which is invoked by the STM when it completes self-initialization but prior to

resuming the MLE. If SmmStmSetupRip is zero, this indicates to the STM that there

is no SMM specific setup entry point for the thread. If Intel64Mode is clear (0),

the upper 32 bits of SmmStmSetupRip must be zero.

SmmStmTeardownRip A SmmCs based 64-bit offset which contains the SMM guest entry

point which will be invoked by the STM when it receives a teardown request from

the MLE. If SmmStmTeardownRip is zero, this indicates to the STM that there is no

STM Runtime

 43

SMM specific teardown entry point for the thread. If Intel64Mode is clear (0), the

upper 32 bits of SmmStmTeardownRip must be zero.

SmmSmiHandlerRip A SmmCs based 64-bit offset which contains the SMM guest entry

point which is invoked by the STM as a result of an SMI. This field is required for

all processor threads and must not be zero. If Intel64Mode is clear (0), the upper

32 bits of SmmSmiHandlerRip must be zero.

SmmSmiHandlerRsp A SmmSs based 64-bit offset which contains the SMM guest stack

pointer at the point it is invoked by the STM as a result of an SMI. This field is

required for all processor threads and must not be zero. If Intel64Mode is clear

(0), the upper 32 bits of SmmSmiHandlerRsp must be zero.

GdtPtr A 64-bit linear address which contains the starting location of the SMM guest

GDT. This GDT structure conforms to the IA-32 Intel® Architecture Software

Development Manual. The entire GDT must be contained within the region defined

by the SMRR.

GdtSize Indicates the size in bytes of the entire GDT. This includes the NULL

descriptor at position 0. GdtSize bits 2:0 are assumed to be 0, so the actual GDT

size is a multiple of 8 bytes.

RequiredStmSmmRevId indicates to the STM what SmmRevId is required by the

platform. The value of TXT_PROCESSOR_SMM_DESCRIPTOR.RequiredStmSmmRevId

must be the same as the corresponding value found in the BIOS extended data

from the TXT heap. The former is used by the STM, the latter is used by an STM
loader to match a compatible STM with the platform in the case where the

platform supports dynamic loading of an STM (not currently supported.) See

section 3.12 for format details.

StmProtectionExceptionHandler.SpeRip (See below)

StmProtectionExceptionHandler.SpeRsp (See below)

StmProtectionExceptionHandler.SpeSs (See below)

StmProtectionExceptionHandler.PageViolationException (See below)

StmProtectionExceptionHandler.MsrViolationException (See below)

StmProtectionExceptionHandler.RegisterViolationException (See below)

StmProtectionExceptionHandler.IoViolationException (See below)

StmProtectionExceptionHandler.PciViolationException (See below)

The STM_PROTECTION_EXCEPTION_HANDLER provides a mechanism to inform BIOS

when the STM blocks SMM access to some hardware resource. The callback is

made to SmmCs:SpeRip with the stack based at SpeSs:SpeRsp. If Intel64Mode is

clear (0), the upper 32 bits of SpeRip and SpeRsp must be zero. Each of the bits

(PageViolationException, MsrViolationException,
RegisterViolationException, IoViolationException,

PciViolationException) indicate which of the types of protection exceptions can

be handled by BIOS. See section 6.2 for details.

STM Runtime

44

.

BiosHwResourceRequirements is a 64-bit physical pointer to a byte stream of

STM_RESOURCE_LIST. BIOS should include all IO ports trapped in this list using the

STM_RSC_TRAPPED_IO_DESC entries in the STM_RESOURCE_LIST.

BiosHwResourceRequirements and the byte stream it points to must be

completely contained within TSEG SMRAM. This memory should be considered
static by BIOS and should not be reclaimed for other uses. The STM must copy the

contents of the BIOS Resource List into STM-controlled memory that the SMI

handler cannot manipulate. See 12 for details on STM_RESOURCE_LIST. All

instances of TXT_PROCESSOR_SMM_DESCRIPTOR should have the same value for

BiosHwResourceRequirements.

AcpiRsdp is a 64-bit physical pointer to ACPI RSDP table. This field should only be

used when STM does non-TXT launch. STM will parse ACPI table during launch
time, because STM need information on CPU number or PCI Express Base Address.

The STM launcher should guarantee the ACPI table is correct at during launch

time. For TXT launch, STM can find related information in TXT heap, and never use

this field.

PhysicalAddressBit indicates the max physical address bit supported by this

platform. STM may setup EPT page table based on PhysicalAddressBit. Because

STM only has limited memory in MSEG, the platform should only report
PhysicalAddressBit that cover the physical memory and MMIO. The

PhysicalAddressBit can be smaller than the value returned by

CPUID(0x80000008).

If the system is going to support STM operation, BIOS must allocate and initialize one

instance of the TXT_PROCESSOR_SMM_DESCRIPTOR data structure for each processor

thread as part of normal SMM initialization. The structure declares initial register state
and GDT location. There are four SMM guest entry points declared. Three are optional,

for BIOS notification of STM setup, STM teardown, and BIOS notification of protection

exceptions. Only SmmSmiHandlerRip is required, which is used as the SMI handler

entry point when servicing SMIs. Except for SmmCs:SpeRip, all BIOS SMI handler code

that executes as a result of any of these entry points must eventually return to the

STM via the RSM instruction. SmmCs:SpeRip returns to the STM via a special VMCALL

interface, described below. Intermediate VMEXITS are possible because of VMCS
enabled traps or VMCALLs.

The STM is responsible for using the information from the

TXT_PROCESSOR_SMM_DESCRIPTOR structure to set up the initial register state in the

SMM guest VMCS prior to invoking the BIOS SMI handler in a VM as a result of STM

setup, STM teardown, or as a result of an SMI.

All STM VMRESUME operations that return control back into the SMM guest must

maintain the VMCS register state as it was when the VMEXIT occurred except for any
changes specifically necessary to support the VMEXIT condition.

With the exception of the SmramToVmcsRestoreRequired and the

ReinitializeVmcsRequired bits, the BIOS SMI handler should not change the

TXT_PROCESSOR_SMM_DESCRIPTOR structure any time there’s an STM configured. Since

the STM only reads the data during STM configuration, any changes would not be

STM Runtime

 45

recognized. The BIOS is free, however, to reload the GDT or manipulate the contents

of the GDT while running within the SMM guest.

There are two supported behaviors related to the preservation of the STM guest VMCS

across SMI events. By default, only the RIP and RSP registers are re-initialized on

each new SMI; and all of the other state is preserved from the previous SMI. This
minimizes the performance overhead related to initializing the VMCS. However, if

BIOS has changed its state in a way that is incompatible with the initial RIP and RSP

values, it must indicate this to the STM via the ReinitializeVmcsRequired bit.

There are a number of requirements on BIOS and on the STM for proper handling of

the ReinitializeVmcsRequired bit.

1.5 The ReinitializeVmcsRequired bit must be set on every thread by the POST

BIOS to ensure the STM fully initializes the BIOS VMCS prior to launching the
SMM guest.

2.5 The BIOS SMI handler must set this bit prior to RSM on any thread that has

evolved to a state incompatible with the initial values of RIP and RSP.

3.5 STM must clear this bit on all threads prior to resuming the interrupted
context.

4.5 The STM must set this bit prior to completing teardown, to ensure a

subsequent re-launch of the STM operates smoothly.

5.5 The STM must implement an “invalid guest state” handler, such that if entry

into the SMM guest ever fails, it will reinitialize the entire guest state in the

VMCS based on TXT_PROCESSOR_SMM_DESCRIPTOR and try launching the SMM

guest again.

6.2 STM protection exceptions

In general, the BIOS SMI handler should not be accessing protected resources. The

STM will deny the BIOS SMI handler access to all protected pages, MSRs, and other

hardware registers with trust implications per the MLE’s protection policy.

The BIOS SMI handler may optionally declare a “protection exception handler” which

will be invoked by the STM via a VMRESUME operation if a VMEXIT occurs as a result

of a protection violation. The BIOS SMI handler enables exception delivery for each
class of protection exception by setting the corresponding bit in the

StmProtectionExceptionHandler field of the TXT_PROCESSOR_SMM_DESCRIPTOR

structure. If the BIOS SMI handler does not support protection exception callbacks, it

must ensure that the entire StmProtectionExceptionHandler structure is cleared to

zero.

If the BIOS SMI handler has not declared an STM protection exception handler or

enabled the particular exception class, the STM responds to a protection violation by

writing STM_CRASH_PROTECTION_EXCEPTION to the TXT.ERRORCODE register and

asserting TXT.CMD.SYS_RESET.

If, however, the BIOS SMI handler has declared and enabled an STM protection
exception handler as described above, the STM will resume SMM guest execution in

this handler using SmmCs:SpeRip and SmmSs:SpeRsp defined in the

STM Runtime

46

StmProtectionExceptionHandler structure. The STM passes the full register state of

the offending code to the STM protection exception handler on the stack. The STM
must validate that the size of the full register state is not within the STM image. The

stack frame differs depending on the state of the Intel64Mode bit.

If Intel64Mode is clear (0), a 32 bit stack frame is used and all stack locations are 32

bit. Unused portions of stack locations due to registers smaller than 32 bits in size are

cleared to zero. If Intel64Mode is set (1), a 64 bit stack frame is used. All stack

locations are 64 bit. Unused portions of stack locations due to registers smaller than

64 bits are cleared to zero.

ErrorCode indicates the TXT_SMM_PROTECTION_EXCEPTION_TYPE value that caused the

exception.

 Table 6-1. 32-bit protection exception stack frame

 SpeSs:SpeRsp initial stack location

SS

ESP

EFLAGS

CS

EIP

ErrorCode TXT_SMM_PROTECTION_EXCEPTION_TYPE

VMCS_EXIT_QUALIFICATION 64 bits. See processor reference.

VMX_EXIT_INSTRUCTION_LENGTH See processor reference.

VMX_EXIT_INSTRUCTION_INFO See processor reference.

CR0

CR2

CR3

EAX

EBX

ECX

EDX

EBP

ESI

EDI Location of stack pointer when handler is entered

Table 6-2. Intel 64 protection exception stack frame

 SpeSs:SpeRsp initial stack location

SS

RSP

EFLAGS

STM Runtime

 47

CS

RIP

ErrorCode

VMX_EXIT_QUALIFICATION 64 bits. See processor reference.

VMX_EXIT_INSTRUCTION_LENGTH 32 bits (upper 32 bits zero). See processor reference.

VMX_EXIT_INSTRUCTION_INFO 32 bits (upper 32 bits zero). See processor reference.

CR0

CR2

CR3

CR8

RAX

RBX

RBX

RDX

RBP

RSI

RDI

R8

R9

R10

R11

R12

R13

R14

R15 Location of stack pointer when handler is entered

Once the BIOS completes handling the exception, it returns to the STM via the

VMCALL interface StmReturnFromProtectionException. Based on the inputs to

StmReturnFromProtectionException, the STM then either writes

STM_CRASH_PROTECTION_EXCEPTION to the TXT.ERRORCODE register and asserts

TXT.CMD.SYS_RESET, or resumes the SMM guest using the potentially modified

register state contained in the stack frame that was passed into the exception handler.

6.3 SMRAM ranges and cache-ability

Substantial SMI performance gains can be realized by allowing the processor to cache

SMRAM. When running under an STM, control of TSEG caching is done via the STM.

Depending on processor SMRR capabilities, this may involve only controlling access to
the SMRR, or may include controlling access to multiple MTRRs.

STM Runtime

48

If IA32_MTRRCAP[11] is set, this indicates SMRR functionality is implemented in the

CPU. The implementation of the SMRR in Intel® Core™ i7 and later processors is
architecturally defined.

6.3.1 SMRR for Intel® Core™ i7 Processors and later

The SINIT-AC module will verify the SMRR programming and the hardware manages

all SMRAM cache-ability without assistance from the STM.

STM must prevent the BIOS SMI handler from writing the IA32_SMRR_PHYSBASE and

IA32_SMRR_PHYSMASK MSRs to maintain the integrity of the SMRR feature.

6.4 Monitor trap flag handling in STM

There exists an edge condition with regard to VMENTRY into a guest with the monitor
trap flag (MTF) set and a simultaneous SMI. In order to ensure transparent handling

of the monitor trap flag (MTF) in the MLE, the STM must observe this condition and re-

inject the MTF back into the interrupted guest when it is resumed.

The STM can detect this condition by looking at bit 28 of the exit reason in the VMCS

of the interrupted context. If this bit is set, it indicates that a parallel exit to the STM

occurred with a pending MTF VMEXIT.

In this case, prior to resuming the interrupted guest, the STM must set the VMENTRY

interrupt-information field in the interrupted contexts VMCS to 80000070H (inject

"other event" number 0). This will cause an MTF VMEXIT to be pended and delivered
immediately after completion of the VMRESUME from the STM.

If the STM doesn't do this re-injection, the guest will execute two instructions, rather

than one, before the MTF VMEXIT occurs. This may have undesirable effects on the
MLE and must be avoided.

6.5 Performance Monitoring

Performance monitoring requires special treatment by the STM. The STM shall disable

the CPUs performance monitoring while in SMM. Upon receiving control due to an SMI,

the STM shall save the contents of the IA32_PERF_GLOBAL_CTRL MSR, disable any
enabled bits in the IA32_PERF_GLOBAL_CTRL MSR, by clearing the "load

IA32_PERF_GLOBAL_CTRL" VM-exit control and use the VM-exit MSR-store area and

VM-exit MSR-load area to save and load the MSR.

6.6 Microcode Patch

Since microcode patches must be loaded in VMX Root Mode, the STM must assist the

SMI handler guest to accomplish this functionality. For microcode patch, the SMI

handler should list the IA32_BIOS_UPDT_TRIG MSR in its required resource list with
bit 0 of Attributes set to 1 so that the STM will process an access request to this MSR

on behalf of the SMI handler. If the MLE’s policy does not preclude the SMI handler’s

STM Runtime

 49

access to the IA32_BIOS_UPDT_TRIG MSR, the STM will execute the microcode patch

on behalf of the SMI handler. However, if the MLE’s policy does preclude the SMI
handler’s access, the STM will drop a write request to this MSR.

§

STM Teardown

50

7 STM Teardown

STM teardown is generally the reverse of the startup and is recommended to be as

follows:
1. MLE removes all secrets from memory and writes to TXT.CMD.NO-

SECRETS

2. MLE caps dynamic PCRs

3. MLE invokes StopStmVMCALL on every logical processor. (see section 9.3)

4. MLE executes VMXOFF on every logical processor

5. MLE executes GETSEC[SEXIT] on the BSP

If preparing for S3 sleep, the recommended sequence is slightly different:
1. MLE encrypts all secrets with key K

2. MLE seals key K to dynamic PCRs with monotonic counter

3. MLE removes all secrets from memory, including the key K and writes to
TXT.CMD.NO-SECRETS

4. MLE computes hash of all TCB memory

5. MLE seals hash to dynamic PCRs with monotonic counter
6. MLE caps dynamic PCRs

7. MLE invokes StopStmVMCALL on every logical processor. (see section 9.3)

8. MLE executes VMXOFF on every logical processor

9. MLE executes GETSEC[SEXIT] on the BSP
When preparing for S3 sleep, step 9 above will cause legacy SMI to be re-enabled. It

is important that if this step is delayed or omitted, the MLE must execute

GETSEC[SMCTRL] on every logical processor prior to writing the ACPI sleep enable
register.

Note that bit 2 (if supported by the CPU) of the IA32_SMM_MONITOR_CTL MSR (Index
9BH) governs SMI unmasking behavior when VMXOFF is executed. The MLE directs

the STM how to set this bit in StartStmVmcall.

The teardown implementation should take care that MSEG should be returned to a
pristine state in which the STM can later be re-launched with the same hash value.

STM Teardown

 51

§

VMCALL Interfaces Between BIOS SMI Handler and STM

52

8 VMCALL Interfaces Between

BIOS SMI Handler and STM

This section defines all VMCALL style interfaces the STM should implement to facilitate

interoperability with the BIOS SMI handler.

The VT architecture enables a controlled way to switch from a virtual machine back

into the monitor via the VMCALL instruction. The instruction itself takes no parameters

so all registers are available for API definition.

Any services needed by the BIOS SMM guest from the STM are supported either

implicitly (i.e. page fault to the STM on SMM access to unmapped page or other

VMEXIT), or explicitly via a VMCALL interface to the STM. By convention, the STM

VMCALL interface will encode a function number in EAX. All other input registers and
all output registers (including EAX) are defined by the particular function being

invoked.

All parameters and data are passed either in registers, or in caller allocated buffers
pointed to by registers. There is no provision for stack based parameter passing.

8.1 Optimizing BIOS Resources

During initialization, the STM obtains a list of resources required by the BIOS SMI

handler. To minimize the time it takes to service an SMI, wherever possible these
resources should be statically allocated to the BIOS in order to avoid access faults

later.

All memory pages contained in the BIOS resource list should be statically mapped into
the SMM guest’s page table. Other resources declared in the BIOS resource list (e.g.

MSR access) should also be statically enabled for BIOS access whenever possible for

the same reason.

If the BIOS SMI handler accesses a resource outside of this required resource list that

has not been protected by the MLE and is not part of MSEG itself, the STM must grant

BIOS access to the resource. If the resource access is denied, then a protection

exception is signaled to the SMI handler (if registered), or the system is reset (see
section 6.2).

For example: If the BIOS SMI handler accesses a page outside of the BIOS required

resource list, a page fault will occur causing a VMEXIT back to the STM. If the faulting
page has not been protected by the MLE and is not within the region from the base of

MSEG to the top of TSEG, the STM must map the page into the BIOS SMI handler’s

address space and resume the SMI handler.

Once a resource is added to the BIOS SMI handler’s resource pool in this demand-

based manner, it need not be removed unless the MLE subsequently requests

protection of that resource. It is expected that optimal system performance will be
obtained if the BIOS SMI handler is allowed to accumulate resources over time. The

VMCALL Interfaces Between BIOS SMI Handler and STM

 53

system will “settle” and BIOS will have access to the resources it commonly touches

without inducing faults. However, this STM design approach induces the possibility
that subsequent protection requests from the MLE could take more time as the STM

must synchronously remove the resource from the BIOS space.

Because the STM treats the protection policy as global, it is not necessary to make a
protection request on more than one CPU thread. However, the MLE root must

rendezvous all CPU threads after making a protection request to ensure all CPU

threads recognize the new protection policy.

8.2 Memory resources

8.2.1 Basic rules for SMM guest memory visibility

The STM is responsible for controlling SMM guest access to pages of memory in order
to protect the integrity and confidentiality of the MLE. In addition, the STM must

present a consistent and functional view of the system to the SMI handler.

The STM must guarantee that all pages within the processor’s native address space
which are not protected are presented to the SMM guest with a 1:1 guest physical to

host physical mapping. This includes normal memory, device memory, I/O APIC, local

APIC, PCI express configuration space, etc. In this way, the SMI handler has the same
view of memory as in the non-STM model. Page faults while running the SMI handler

are permissible as long as they are resolved transparently by the STM. Non-identity

mappings are possible if BIOS specifically requests them using the

StmMapAddressRangeVMCALL (see below).

The STM must guarantee the SMM guest has mappings to all of SMRAM except from

the base of MSEG to the top of TSEG. In other words, the STM must ensure normal

BIOS-owned SMRAM pages are present when executing the SMM guest.

The STM should determine the location and size of TSEG by consulting SMRR.

The STM must not map any MLE protected pages into the SMM guest’s address space.

This includes the MLE initial memory footprint and any pages STM has subsequently
granted to the MLE for protection.

It is strongly recommended that the STM implementation enables Extended Page

Tables (EPT) if EPT is supported by the processor.

If EPT is used by STM, the STM will setup a 1:1 EPT mapping and use EPT to provide

protection. In such case, the STM allows direct control of CR3 by the BIOS SMI

handler. The BIOS SMI handler will run only with paging on. That is, CR0.PG must be
set to 1 by the STM on VMLAUNCH / VMRESUME from the point-of-view of the

processor and SMM guest.

Unless EPT under the control of the STM are used (not all CPUs support this feature),

the STM must not allow the SMM guest to turn off paging, or directly manipulate the
page tables in any other way (e.g. reload CR3). All page table manipulations required

by the SMM guest must be done by the STM as a result of either a page fault, or

because of a specific request from the SMM guest via a VMCALL back to the STM.

VMCALL Interfaces Between BIOS SMI Handler and STM

54

8.2.2 StmMapAddressRange VMCALL

StmMapAddressRange enables a SMM guest to create a non-1:1 virtual to physical

mapping of an address range into the SMM guest’s virtual memory space. Example
usages:

StmMapAddressRange can be used to pre-load the SMM guest’s page tables during

SmmStmSetupRip to avoid page fault induced latency when servicing an SMI.

It may also be used to map a physical address > 4G into a 32 bit SMM guest’s virtual
address space or to create other non 1:1 mappings.

It could be used to facilitate execution of SMM code from a fixed virtual address in

order to avoid address fix-ups for code images in SMM

It could be used to change the caching parameters of a given address range during

SMM.

*** WARNING ***

Incorrect SMM implementation can cause cache incoherency.

*** WARNING ***

The SMM guest is responsible for ensuring cache and TLB coherency. It must flush

caches and invalidate TLBs as necessary prior to making this call. If this done
incorrectly, cache incoherencies and unpredictable or incorrect system behavior may

result.

Since the mechanisms typically used by operating systems for maintaining cache
coherency and doing TLB shoot-downs are generally not available to the SMM guest (it

may not have direct access to its page tables and cannot easily use interrupts or SIPI

to coordinate between processors), it is recommended that multi-threading of SMI
handlers be extremely limited. If the BSP handles all of the work required to service

an SMI, and the APs restrict their memory accesses to regions of SMRAM that are not

going to be modified for either their cache attributes or page mappings, then all cache
issues will be contained to the BSP only. This greatly simplifies the problem since the

BSP can manage cache flushes and TLB invalidations for itself. This is the

recommended implementation.

If the TXT_PROCESSOR_SMM_DESCRIPTOR.EptEnabled bit is set by the STM, BIOS can

control its own page tables. In this case, the STM implementation may optionally

return ERROR_STM_FUNCTION_NOT_SUPPORTED.

Input registers:

EAX = STM_API_MAP_ADDRESS_RANGE

EBX = low 32 bits of physical address of caller allocated

STM_MAP_ADDRESS_RANGE_DESCRIPTOR structure.

ECX = high 32 bits of physical address of caller allocated

STM_MAP_ADDRESS_RANGE_DESCRIPTOR structure. If Intel64Mode is clear (0), ECX

must be 0.

VMCALL Interfaces Between BIOS SMI Handler and STM

 55

Note: All fields of STM_MAP_ADDRESS_RANGE_DESCRIPTOR are inputs only. They are not

modified by StmMapAddressRange.

Output registers:

CF = 0: No error, EAX set to STM_SUCCESS. The memory range was mapped as

requested.

CF = 1: An error occurred, EAX holds relevant error value.

EAX = ERROR_STM_SECURITY_VIOLATION: The requested mapping contains a protected

resource.

EAX = ERROR_STM_CACHE_TYPE_NOT_SUPPORTED: The requested cache type could not

be satisfied.

EAX = ERROR_STM_PAGE_NOT_FOUND: Page count must not be zero.

EAX = ERROR_STM_FUNCTION_NOT_SUPPORTED: STM supports EPT and has not

implemented StmMapAddressRange().

EAX = ERROR_STM_UNSPECIFIED: An unspecified error occurred.

All other registers unmodified.

Related definitions:

STM_API_MAP_ADDRESS_RANGE See Appendix B

typedef struct {

 UINT64 PhysicalAddress;

 UINT64 VirtualAddress;

 UINT32 PageCount;

 UINT32 PatCacheType;

} STM_MAP_ADDRESS_RANGE_DESCRIPTOR;

// Allowable values for PatCacheType

#define ST_UC 0x00 // uncached strong ordering

#define WC 0x01 // write combining

#define WT 0x04 // write through

#define WP 0x05 // write protect

#define WB 0x06 // write back

#define UC 0x07 // uncached strong ordering, may

 // be overridden to WC by an MTRR.

#define FOLLOW_MTRR 0xFFFFFFFF

PhysicalAddress Indicates the host physical address requested. This address is

assumed to be 4K aligned. Bits 11:0 are ignored and assumed to be 0.

VirtualAddress Indicates the virtual address requested. This address is assumed

to be 4K aligned. Bits 11:0 are ignored and assumed to be 0.

PageCount Indicates the number of 4K pages of physical address space requested.

PatCacheType Indicates the requested cache type. The STM must satisfy all cache

type requests using the PAT only. MTRR manipulations are not allowed. Allowable

values for PatCacheType are ST_UC, WC, WT, WP, WB, UC; or the pseudo type of

VMCALL Interfaces Between BIOS SMI Handler and STM

56

FOLLOW_MTRR. FOLLOW_MTRR indicates the PAT should be programmed the same as the

governing MTRR.

8.2.3 StmUnmapAddressRange VMCALL

StmUnmapAddressRange enables a SMM guest to remove mappings from its page

table.

If TXT_PROCESSOR_SMM_DESCRIPTOR.EptEnabled bit is set by the STM, BIOS can

control its own page tables. In this case, the STM implementation may optionally

return ERROR_STM_FUNCTION_NOT_SUPPORTED.

Input registers:

EAX = STM_API_UNMAP_ADDRESS_RANGE

EBX: low 32 bits of virtual address of caller allocated

STM_UNMAP_ADDRESS_RANGE_DESCRIPTOR structure.

ECX: high 32 bits of virtual address of caller allocated

STM_UNMAP_ADDRESS_RANGE_DESCRIPTOR structure. If Intel64Mode is clear (0), ECX

must be zero.

Output registers:

CF = 0: No error, EAX set to STM_SUCCESS. The memory range was unmapped as

requested.

CF = 1: An error occurred, EAX holds relevant error value.

EAX = ERROR_STM_FUNCTION_NOT_SUPPORTED: STM supports EPT and has not

implemented StmUnmapAddressRange().

EAX = ERROR_STM_UNSPECIFIED: An unspecified error occurred.

All other registers unmodified.

Related definitions:

STM_API_UNMAP_ADDRESS_RANGE See Appendix B

typedef struct {

 UINT64 VirtualAddress;

 UINT32 Length;

} STM_UNMAP_ADDRESS_RANGE_DESCRIPTOR;

VirtualAddress indicates the virtual to be unmapped. The STM will round

VirtualAddress down to the nearest page boundary.

Length Indicates the number of bytes to unmap. STM will round (VirtualAddress +

Length) up to the nearest 4K page boundary.

VMCALL Interfaces Between BIOS SMI Handler and STM

 57

All fields of STM_UNMAP_ADDRESS_RANGE_DESCRIPTOR are inputs only. They are not

modified by StmUnmapAddressRange.

Note: The STM un-maps pages unconditionally. For example, if the SMM guest
requests that the page it is executing in be unmapped, the STM will do it. This is most

likely a bug in the SMM guest as this is not a reasonable thing to do. Even so, if the

original page which was deleted had a 1:1 physical mapping, it may not appear to the
SMM guest that is was removed because the SMM guest will immediately VMEXIT with

a page fault and the STM will re-map the page back again.

8.2.4 StmAddressLookup VMCALL

Since the normal OS environment runs with a different set of page tables than the
SMM guest, virtual mappings will certainly be different. In order to do a guest virtual

to host physical translation of an address from the normal OS code (EIP for example),

it is necessary to walk the page tables governing the OS page mappings. Since the
SMM guest has no direct access to the page tables, it must ask the STM to do this

page table walk. This is supported via the StmAddressLookup VMCALL. All OS page

table formats need to be supported, (e.g. PAE, PSE, Intel64, EPT, etc.)

StmAddressLookup takes a CR3 value and a virtual address from the interrupted code

as input and returns the corresponding physical address. It also optionally maps the

physical address into the SMM guest’s virtual address space. This new mapping

persists ONLY for the duration of the SMI and if needed in subsequent SMIs it must be
remapped. PAT cache types follow the interrupted environment’s page table.

If EPT is enabled, OS CR3 only provides guest physical address information, but the

SMM guest might also need to know the host physical address. Since SMM does not
have direct access rights to EPT (it is protected by the STM), SMM can input

InterruptedEptp to let STM help to walk through it, and output the host physical

address.

Input registers:

EAX = STM_API_ADDRESS_LOOKUP

EBX: low 32 bits of virtual address of caller allocated

STM_ADDRESS_LOOKUP_DESCRIPTOR structure.

ECX: high 32 bits of virtual address of caller allocated

STM_ADDRESS_LOOKUP_DESCRIPTOR structure. If Intel64Mode is clear (0), ECX must be

zero.

Output registers:

CF = 0: No error, EAX set to STM_SUCCESS.

PhysicalAddress contains the host physical address determined by walking the

interrupted SMM guest’s page tables.

SmmGuestVirtualAddress contains the SMM guest’s virtual mapping of the requested

address.

CF = 1: An error occurred, EAX holds relevant error value.

VMCALL Interfaces Between BIOS SMI Handler and STM

58

EAX = ERROR_STM_SECURITY_VIOLATION: The requested page was a protected page.

EAX = ERROR_STM_PAGE_NOT_FOUND: The requested virtual address did not exist in the

page given page table.

EAX = ERROR_STM_BAD_CR3: The CR3 input was invalid. CR3 values must be from one

of the interrupted guest, or from the interrupted guest of another processor.

EAX = ERROR_STM_PHYSICAL_OVER_4G: The resulting physical address is greater than

4G and no virtual address was supplied. The STM could not determine what

address within the SMM guest’s virtual address space to do the mapping.

STM_ADDRESS_LOOKUP_DESCRIPTOR field PhysicalAddress contains the physical

address determined by walking the interrupted environment’s page tables.

EAX = ERROR_STM_VIRTUAL_SPACE_TOO_SMALL: A specific virtual mapping was

requested, but SmmGuestVirtualAddress + Length exceeds 4G and the SMI

handler is running in 32 bit mode.

EAX = ERROR_STM_UNSPECIFIED: An unspecified error occurred.

All other registers unmodified.

Related definitions:

STM_API_ADDRESS_LOOKUP See Appendix B

typedef struct {

 UINT64 InterruptedGuestVirtualAddress;

 UINT32 Length;

 UINT32 Reserved;

 UINT64 InterruptedCr3;

 UINT64 InterruptedEptp;

 struct {

 UINT32 MapToSmmGuest :2; // bitfield

 UINT32 InterruptedCr4Pae :1; // bitfield

 UINT32 InterruptedCr4Pse :1; // bitfield

 UINT32 InterruptedIa32eMode :1; // bitfield

 UINT32 Reserved1 :27; // bitfield

 };

 UINT32 Reserved2;

 UINT64 PhysicalAddress;

 UINT64 SmmGuestVirtualAddress;

} STM_ADDRESS_LOOKUP_DESCRIPTOR;

#define DO_NOT_MAP 0

#define ONE_TO_ONE 1

#define VIRTUAL_ADDRESS_SPECIFIED 3

InterruptedVirtualAddress indicates the virtual address to be looked up. This is an

input only and is not modified by the STM.

Length indicates the size in bytes to be mapped. Length is ignored if MapToSmmGuest

== DO_NOT_MAP. This is an input only and is not modified by the STM.

InterruptedCr3 contains the address of the page table with which to do the lookup.

This is an input only and is not modified by the STM.

VMCALL Interfaces Between BIOS SMI Handler and STM

 59

InterruptedEptp contains the address of the EPT with which to do the lookup. This is

an input only and is not modified by the STM.

MapToSmmGuest controls SMM guest mapping. It must be set to DO_NOT_MAP,

ONE_TO_ONE, or VIRTUAL_ADDRESS_SPECIFIED. This is an input only and is not

modified by the STM.

If MapToSmmGuest = DO_NOT_MAP, then PhysicalAddress is populated with the

address determined by walking the interrupted environment’s page tables and

SmmGuestVirtualAddress input is ignored and not modified.

If MapToSmmGuest = ONE_TO_ONE, then PhysicalAddress is populated with the

address determined by walking the interrupted environment’s page tables and

SmmGuestVirtualAddress is ignored on input and is modified to contain the SMM

guest’s virtual mapping on output, which is the same as PhysicalAddress. If

PhysicalAddress is > 4G, the function fails and returns with CF=1 and EAX =

ERROR_STM_PHYSICAL_OVER_4G. In this case, PhysicalAddress is still populated

with the address determined by walking the interrupted environment’s page

tables.

If MapToSmmGuest = VIRTUAL_ADDRESS_SPECIFIED, then PhysicalAddress is

populated with the address determined by walking the interrupted environment’s

page tables and mapped to the SMM guest virtual address specified by the

SmmGuestVirtualAddress input.

InterruptedCr4Pae contains the CR4.PAE information. This is an input only and is not

modified by the STM.

InterruptedCr4Pse contains the CR4.PSE information. This is an input only and is not

modified by the STM.

InterruptedIa32eMode contains the Ia32eMode information. This is an input only and

is not modified by the STM.

SmmGuestVirtualAddress is not modified. Calling software must ensure sufficient

virtual address space to accommodate the request.

8.2.5 StmReturnFromProtectionException VMCALL

When returning from a protection exception (see section 6.2), the SMM guest can

instruct the STM to take one of two paths. It can either request a value be logged to

the TXT.ERRORCODE register and subsequently reset the machine (indicating it
couldn’t resolve the problem), or it can request that the STM resume the SMM guest

again with the specified register state.

Unlike other VMCALL interfaces, StmReturnFromProtectionException behaves more

like a jump or an IRET instruction than a “call”. It does not return directly to the
caller, but indirectly to a different location specified on the caller’s stack (see section

6.2) or not at all.

If the SMM guest STM protection exception handler itself causes a protection
exception (e.g. a single nested exception), or more than 100 un-nested exceptions

occur within the scope of a single SMI event, the STM must write

VMCALL Interfaces Between BIOS SMI Handler and STM

60

STM_CRASH_PROTECTION_EXCEPTION_FAILURE to the TXT.ERRORCODE register and

assert TXT.CMD.SYS_RESET. The reason for these restrictions is to simplify the code
requirements while still enabling a reasonable debugging capability.

The semantics of the VMCALL are as follows:

Input registers:

EAX = STM_API_RETURN_FROM_PROTECTION_EXCEPTION

EBX = 0: resume SMM guest using register state found on exception stack.

EBX = 1 to 0x0F: EBX contains a BIOS error code which the STM must record in the

TXT.ERRORCODE register and subsequently reset the system via
TXT.CMD.SYS_RESET. The value of the TXT.ERRORCODE register is calculated as

follows:

 TXT.ERRORCODE = (EBX & 0x0F) | STM_CRASH_BIOS_PANIC

EBX = 0x10 to 0xFFFFFFFF – reserved, do not use.

Related definitions:

STM_API_RETURN_FROM_PROTECTION_EXCEPTION See Appendix B

VMCALL Interfaces Between BIOS SMI Handler and STM

 61

§

VMCALL Interfaces Between MLE and STM

62

9 VMCALL Interfaces Between

MLE and STM

All MLE-facing VMCALL interfaces require a VMCALL from VMX root mode in the MLE.

Parameters follow the convention that an API number is encoded in EAX, and ECX:EBX
are used to pass a physical address of a parameter data structure. In all cases, the

parameter structure must be 4K aligned, and must not cross a 4K boundary.

Before making any of these calls, the MLE root should verify that the
IA32_SMM_MONITOR_CTL.VALID (bit 0) is set. If a VMCALL is attempted from VMX

root mode (CPL=0) when IA32_SMM_MONITOR_CTL.VALID is clear this indicates

there is no STM present in MSEG and the VMCALL will fail. The STM configuration

lifecycle is as follows:

1. SENTER->SINIT->MLE: MLE begins execution with SMIs disabled (masked).

2. MLE root invokes InitializeProtectionVMCALL() to prepare the STM for

setup of the initial protection profile. This is done on a single CPU and has
global effect.

3. (Optional) MLE may invoke GetBiosResourceVMCALL() to inspect the list of

resources that the BIOS has access to. This can be done on a single CPU.

4. MLE root invokes ProtectResourceVMCALL() to define the initial protection

profile. The protection profile is global across all CPUs.

5. MLE root invokes StartStmVMCALL() to enable the STM to begin receiving SMI

events. This must be done on every logical CPU.

6. MLE root may invoke ProtectResourceVMCALL() or

UnProtectResourceVMCALL() during runtime as many times as necessary.

7. MLE root invokes StopStmVMCALL() to disable the STM. This must be done on

every logical CPU. SMI is again masked following StopStmVMCALL().

9.1 InitializeProtectionVMCALL()

InitializeProtectionVMCALL() prepares the STM for setup of the initial protection

profile which is subsequently communicated via one or more invocations of

ProtectResourceVMCALL(), prior to invoking StartStmVMCALL(). It is only necessary

to invoke InitializeProtectionVMCALL() on one processor thread.

InitializeProtectionVMCALL() does not alter whether SMIs are masked or

unmasked. The STM should return back to the MLE with “Blocking by SMI” set to 1 in

the GUEST_INTERRUPTIBILITY field for the VMCS the STM created for the MLE guest.

Input registers:

VMCALL Interfaces Between MLE and STM

 63

EAX = STM_API_INITIALIZE_PROTECTION

Output registers:

CF = 0: No error, EAX set to STM_SUCCESS, EBX bits set to indicate STM capabilities

as defined below. The STM has set up an empty protection profile, except for the

resources that it sets up to protect itself. The STM must not allow the SMI handler to

map any pages from the MSEG Base to the top of TSEG. The STM must also not allow
SMI handler access to those MSRs which the STM requires for its own protection.

CF = 1: An error occurred, EAX holds relevant error value.

EAX = ERROR_STM_ALREADY_STARTED: The STM is already configured and active. The

STM remains active and guarding the previously enabled resource list.

EAX = ERROR_STM_UNPROTECTABLE: The STM determines that based on the platform

configuration, the STM is unable to protect itself. For example, the BIOS required

resource list contains memory pages in MSEG.

EAX = ERROR_STM_UNSPECIFIED: An unspecified error occurred.

All other registers unmodified.

Related definitions:

The return value of EBX when CF==0 is defined as follows:

31 30…4 3 2 1 0

0

M

S

R

B

G

M

B

G

I

0

BGI: If set (1), indicates byte granular MMIO range support. If clear (0), indicates

page granular MMIO range support. See 12.

BGM: If set (1), indicates byte granular memory range support. If clear (0), indicates
page granular memory range support. See 12.

MSR: If set (1), indicates bit granular MSR resource support. If clear (0), indicates
whole MSR granular resource support only. See 12.

STM_API_INITIALIZE_PROTECTION See Appendix B

ERROR_STM_ALREADY_STARTED See Appendix C

ERROR_STM_WITHOUT_SMX_UNSUPPORTED See Appendix C

9.2 StartStmVMCALL()

StartStmVmcall() is used to configure an STM that is present in MSEG. SMIs should

remain disabled from the invocation of GETSEC[SENTER] until they are re-enabled by

StartStmVMCALL(). When StartStmVMCALL() returns, SMI is enabled and the STM

has been started and is active. Prior to invoking StartStmVMCALL(), the MLE root

should first invoke InitializeProtectionVMCALL() followed by as many iterations of

B

G

M

M

S
R

VMCALL Interfaces Between MLE and STM

64

ProtectResourceVMCALL() as necessary to establish the initial protection profile.

StartStmVmcall() must be invoked on all processor threads.

It is necessary to process the initial protection profile for only one of the CPUs, since

there is only one profile. All return values must be the same across all CPUs.

The STM enables SMIs by returning back to the MLE with “Blocking by SMI” set to 0 in

the GUEST_INTERRUPTIBILITY field for the VMCS the STM created for the MLE guest.

Input registers:

EAX = STM_API_START

EDX = STM configuration options. These provide the MLE with the ability to pass

configuration parameters to the STM.

The STM configuration options are defined as follows:

31 30 .. 1 0

0
S
V

SMI VMXOFF (SV): This configuration option bit directs the STM on how to set bit 2 of

the IA32_SMM_MONITOR_CTL MSR (Index 9BH.) Bit 2 of the
IA32_SMM_MONITOR_CTL MSR prevents SMI unblocking following the VMXOFF

instruction. Consult the Intel Software Developer Manuals for additional guidance on

this bit.

If supported by the CPU, the STM will set bit 2 of the IA32_SMM_MONITOR_CTL MSR

to the value of the SMI VMXOFF configuration option bit.

Output registers:

CF = 0: No error, EAX set to STM_SUCCESS. The STM has been configured and is now

active and the guarding all requested resources.

CF = 1: An error occurred, EAX holds relevant error value.

EAX = ERROR_STM_ALREADY_STARTED: The STM is already configured and active. STM

remains active and guarding previously enabled resource list.

EAX = ERROR_STM_WITHOUT_SMX_UNSUPPORTED: The StartStmVMCALL() was invoked

from VMX root mode, but outside of SMX. This error code indicates the STM or
platform does not support the STM outside of SMX. The SMI handler remains active

and operates in legacy mode. See Appendix C

EAX = ERROR_STM_UNSUPPORTED_MSR_BIT: The CPU doesn’t support the MSR bit. The

STM is not active.

EAX = ERROR_STM_UNSPECIFIED: An unspecified error occurred.

All other registers unmodified.

VMCALL Interfaces Between MLE and STM

 65

Related definitions:

STM_API_START See Appendix B

ERROR_STM_ALREADY_STARTED See Appendix C

ERROR_STM_WITHOUT_SMX_UNSUPPORTED See Appendix C

9.3 StopStmVMCALL()

The StopStmVMCALL() is invoked by the MLE to teardown an active STM. This is

normally done as part of a full teardown of the SMX environment when the system is

being shut down. At the time the call is invoked, SMI is enabled and the STM is active.

When the call returns, the STM has been stopped and all STM context is discarded and
SMI is disabled.

Upon completion of StopStmVMCALL(), SMIs are masked. The MLE must re-enable

SMIs either by executing GETSEC[SEXIT] or GETSEC[SMCTRL]. Failure to do this can

result in system instability.

Upon completion of StopStmVMCALL(), all resource protections are removed. Any

future launch of the STM must build a new protected resource list.

This must be invoked on all CPUs. The STM invokes the SmmStmTeardownRip (if
specified) during teardown.

If the MLE subsequently issues a VMXOFF, SMIs may be unmasked. If the processor

supports it, MSR 9B (bit 2) controls whether SMIs are unmasked after VMXOFF. On
processors that don’t support this bit, SMIs will be unconditionally unmasked following

the VMXOFF instruction. The Intel Software Development Manuals describe this in

additional detail.

Input registers:

EAX = STM_API_STOP

Output registers:

CF = 0: No error, EAX set to STM_SUCCESS. The STM has been stopped and is no

longer processing SMI events. SMI is blocked.

CF = 1: An error occurred, EAX holds relevant error value.

EAX = ERROR_STM_STOPPED: The STM was not active.

EAX = ERROR_STM_UNSPECIFIED: An unspecified error occurred.

All other registers unmodified.

Related definitions:

STM_API_STOP See Appendix B

VMCALL Interfaces Between MLE and STM

66

9.4 ProtectResourceVMCALL()

The ProtectResourceVMCALL() is invoked by the MLE root to request protection of

specific resources. The request is defined by a STM_RESOURCE_LIST, which may

contain more than one resource descriptor. Each resource descriptor is processed
separately by the STM. Whether or not protection for any specific resource is granted

is returned by the STM via the ReturnStatus bit in the associated

STM_RSC_DESC_HEADER.

A resource protection request will be denied by the STM if the resource in question

intersects a resource on the BIOS required resource list.

The MLE protection policy is applied to all CPU threads, therefore it is only necessary

to invoke ProtectResourceVMCALL() on one CPU thread. However, the MLE must

rendezvous all CPUs after the ProtectResourceVMCALL() returns before the change to

requested protections can be considered effective. Failure to do this could result in

inadvertently exposing secrets to the BIOS SMI handler. The MLE must wait for this
rendezvous before treating a resource can be considered protected.

ProtectResourceVMCALL() does not alter whether SMI is masked or enabled.

Input registers:

EAX = STM_API_PROTECT_RESOURCE

EBX = low 32 bits of physical address of caller allocated STM_RESOURCE_LIST. Bits

11:0 are ignored and assumed to be zero, making the buffer 4K aligned.

ECX = high 32 bits of physical address of caller allocated STM_RESOURCE_LIST.

Note: all fields of STM_RESOURCE_LIST are inputs only, except for the ReturnStatus

bit. On input, the ReturnStatus bit must be clear. On return, the ReturnStatus bit is

set for each resource request granted, and clear for each resource request denied.

There are no other fields modified by ProtectResourceVMCALL(). The

STM_RESOURCE_LIST must be contained entirely within a single 4K page.

Output registers:

CF = 0: No error, EAX set to STM_SUCCESS. The STM has successfully merged the

entire protection request into the active protection profile. There is therefore no need

to check the ReturnStatus bits in the STM_RESOURCE_LIST.

CF = 1: An error occurred, EAX holds relevant error value.

EAX = ERROR_STM_UNPROTECTABLE_RESOURCE: At least one of the requested resource

protections intersects a BIOS required resource. Therefore, the caller must walk

through the STM_RESOURCE_LIST to determine which of the requested resources was

not granted protection. The entire list must be traversed since there may be multiple

failures.

EAX = ERROR_STM_MALFORMED_RESOURCE_LIST: The resource list could not be parsed

correctly, or did not terminate before crossing a 4K page boundary. The caller must

walk through the STM_RESOURCE_LIST to determine which of the requested resources

was not granted protection. The entire list must be traversed since there may be
multiple failures.

EAX = ERROR_STM_OUT_OF_RESOURCES: The STM has encountered an internal error and

cannot complete the request.

EAX = ERROR_STM_UNSPECIFIED: An unspecified error occurred.

VMCALL Interfaces Between MLE and STM

 67

All other registers unmodified.

Related definitions:

STM_API_PROTECT_RESOURCE See Appendix B

STM_RESOURCE_LIST See 12

ERROR_STM_UNPROTECTABLE_RESOURCE See Appendix C

ERROR_STM_MALFORMED_RESOURCE_LIST See Appendix C

ERROR_STM_WITHOUT_SMX_UNSUPPORTED See Appendix C

9.5 UnProtectResourceVMCALL()

The UnProtectResourceVMCALL() is invoked by the MLE root to request that the STM

allow the SMI handler access to the specified resources.

The MLE protection profile is applied to all CPU threads, therefore it is only necessary

to invoke UnProtectResourceVMCALL() on one CPU thread. However, the MLE root

must rendezvous all CPUs after UnProtectResourceVMCALL() returns before the

change to protections can be considered valid.

The STM does not ensure there was previous protection of the specified resources,

only that these resources are not protected when UnProtectResourceVMCALL()

returns.

Input registers:

EAX = STM_API_UNPROTECT_RESOURCE

EBX = low 32 bits of physical address of caller allocated STM_RESOURCE_LIST. Bits

11:0 are ignored and assumed to be zero, making the buffer 4K aligned.

ECX = high 32 bits of physical address of caller allocated STM_RESOURCE_LIST.

Note: all fields of STM_RESOURCE_LIST are inputs only, except for the ReturnStatus

bit. On input, the ReturnStatus bit must be clear. On return, the ReturnStatus bit is

set for each resource processed. For a properly formed STM_RESOURCE_LIST, this

should be all resources listed. There are no other fields modified by

UnProtectResourceVMCALL(). The STM_RESOURCE_LIST must be contained entirely

within a single 4K page.

Output registers:

CF = 0: No error, EAX set to STM_SUCCESS. The requested resources are not being

guarded by the STM.

CF = 1: An error occurred, EAX holds relevant error value.

EAX = ERROR_STM_MALFORMED_RESOURCE_LIST: The resource list could not be parsed

correctly, or did not terminate before crossing a 4K page boundary. The caller must

walk through the STM_RESOURCE_LIST to determine which of the requested resources

were not able to be unprotected. The entire list must be traversed since there may be
multiple failures.

EAX = ERROR_STM_UNSPECIFIED: An unspecified error occurred.

VMCALL Interfaces Between MLE and STM

68

All other registers unmodified.

Related definitions:

STM_API_UNPROTECT_RESOURCE See Appendix B

STM_RESOURCE_LIST See 12

ERROR_STM_MALFORMED_RESOURCE_LIST See Appendix C

ERROR_STM_WITHOUT_SMX_UNSUPPORTED See Appendix C

9.6 GetBiosResourcesVMCALL()

The GetBiosResourcesVMCALL() is invoked by the MLE root to request the list of BIOS

required resources from the STM.

The BIOS required resources are the same on all CPU threads, therefore it is only

necessary to invoke GetBiosResourcesVMCALL() on one CPU thread. Furthermore, the

BIOS required resource list is static, so the MLE can assume that data returned by

GetBiosResourcesVMCALL() will not dynamically change. This enables the MLE to

evaluate whether its protection profile is viable given the BIOS resource demands.

The BIOS STM_RESOURCE_LIST is returned in a caller allocated 4K aligned buffer. The

buffer is 4K in size and 4K aligned (the low 12 bits of the buffer address must be

zero). If the BIOS resource list is larger than 4K in size, GetBiosResourcesVMCALL()

should be made iteratively. The return value of EDX will be incremented to indicate
the next page index. When EDX is returned cleared to 0, this indicates the entire list

has been retrieved.

If this request is made at a time when SMIs are enabled, the MLE should put the
buffer in a protected memory area inaccessible to the SMI handler.

See description of

TXT_PROCESSOR_SMM_DESCRIPTOR.BiosHwResourceRequirementsPtr in section 6.1 for

details regarding the BIOS STM_RESOURCE_LIST.

Input registers:

EAX = STM_API_GET_BIOS_RESOURCES

EBX = low 32 bits of physical address of caller allocated destination buffer. Bits 11:0
are ignored and assumed to be zero, making the buffer 4K aligned.

ECX = high 32 bits of physical address of caller allocated destination buffer.

EDX = indicates which page of the BIOS resource list to copy into the destination
buffer. The first page is indicated by 0, the second page by 1, etc.

Output registers:

CF = 0: No error, EAX set to STM_SUCCESS. The destination buffer contains the BIOS

required resources. If the page retrieved is the last page, EDX will be cleared to 0. If

there are more pages to retrieve, EDX is incremented to the next page index. Calling

software should iterate on GetBiosResourcesVMCALL() until EDX is returned cleared

to 0.

CF = 1: An error occurred, EAX holds relevant error value.

VMCALL Interfaces Between MLE and STM

 69

EAX = ERROR_STM_PAGE_NOT_FOUND: The page index supplied in EDX input was out of

range.

EAX = ERROR_STM_UNSPECIFIED: An unspecified error occurred.

EDX = Page index of next page to read. A return of EDX=0 signifies that the entire list

has been read. (Note: EDX is both an input and an output register.)

All other registers unmodified.

Related definitions:

STM_API_GET_BIOS_RESOURCES See Appendix B

STM_RESOURCE_LIST See 12

ERROR_STM_PAGE_NOT_FOUND See Appendix C

ERROR_STM_WITHOUT_SMX_UNSUPPORTED See Appendix C

9.7 ManageVmcsDatabaseVMCALL()

See section 10.3 for a description of protected domains.

The ManageVmcsDatabaseVMCALL() is invoked by the MLE root to add or remove an

MLE guest (including the MLE root) from the list of protected domains. Input registers:

EAX = STM_API_MANAGE_VMCS_DATABASE

EBX = low 32 bits of physical address of caller allocated

STM_VMCS_DATABASE_REQUEST. Bits 11:0 are ignored and assumed to be zero, making

the buffer 4K aligned.

ECX = high 32 bits of physical address of caller allocated

STM_VMCS_DATABASE_REQUEST.

Note: all fields of STM_VMCS_DATABASE_REQUEST are inputs only. They are not modified

by ManageVmcsDatabaseVMCALL().

Output registers:

CF = 0: No error, EAX set to STM_SUCCESS.

CF = 1: An error occurred, EAX holds relevant error value.

EAX = ERROR_STM_INVALID_VMCS – indicates a request to remove a VMCS from the

database was made, but the referenced VMCS was not found in the database.

EAX = ERROR_STM_VMCS_PRESENT – indicates a request to add a VMCS to the database

was made, but the referenced VMCS was already present in the database.

EAX = ERROR_INVALID_PARAMETER – Indicates non-zero reserved field.

EAX = ERROR_STM_UNSPECIFIED: An unspecified error occurred.

All other registers unmodified.

Related definitions:

VMCALL Interfaces Between MLE and STM

70

STM_API_MANAGE_VMCS_DATABASE // See Appendix B

The database entries contain information that cannot be derived from normal VMCS

context, or register state at entry into the STM. See Error! Reference source not
found. for full description of domain types.

typedef struct {

 UINT64 VmcsPhysPointer; // bits 11:0 are reserved and must be 0

 struct {

 UINT32 DomainType:4; // bitfield
 UINT32 XStatePolicy:2; // bitfield
 UINT32 DegradationPolicy:4; // bitfield

 UINT32 Reserved1:22; // bitfield - Must be 0

};

 UINT32 AddOrRemove;

} STM_VMCS_DATABASE_REQUEST;

VmcsPhysPointer – This field contains the VMCS pointer. As all VMCSes must be 4k-

aligned bits 11-0 must be 0.

DomainType – These bits indicate the state save area generation and propagation

rules. See section 10 and Error! Reference source not found. for details.

XStatePolicy – This bit field indicates the access policy for extended register state. If

DomainType is UNPROTECTED, then the XStatePolicy field is ignored and assumed

to be XSTATE_READWRITE. For all other domain types, it must have one of the

following values:

XSTATE_READWRITE: The interrupted context’s extended state is fully visible and

modifiable by the BIOS SMI handler. See section 10.

XSTATE_READONLY: Indicates the STM must save the extended state prior to

invoking the BIOS SMI handler (e.g. perform XSAVE with all bits in EAX:EDX

set to save interrupted context). The extended state is not scrubbed. The STM
must restore the saved extended state prior to resuming the interrupted

context. See section 10.

XSTATE_SCRUB: Indicates the STM must save and scrub the extended state prior to

invoking the BIOS SMI handler (e.g. perform XSAVE with all bits in EAX:EDX

set to save interrupted context, then perform XRSTOR using a zeroed XSAVE

buffer to clear all associated registers prior to entry into BIOS SMM handler);
and then restore the saved extended state prior to resuming the interrupted

context. See section 10.

DegradationPolicy – This bit field indicates the minimum protection domain type

permissible by the MLE if domain type degradation occurs. Valid values are the
same as DomainType. See section 10.

AddOrRemove – A value of 1 indicates that the referenced VMCS is to be added to the

protected VMCS database. A value of 0 indicates that the referenced VMCS is to be
removed from the protected VMCS database. All other values are reserved. Note:

to modify an entry, it must first be removed and then added again.

Related definitions:

// Values for DomainType

#define UNPROTECTED 0x00;

VMCALL Interfaces Between MLE and STM

 71

#define INTEGRITY_PROT_OUT_IN 0x04;

#define FULLY_PROT_OUT_IN 0x0C;

#define FULLY_PROT 0x0F;

// Values for XStatePolicy

#define XSTATE_READWRITE 0x00;

#define XSTATE_READONLY 0x01;

#define XSTATE_SCRUB 0x03;

9.8 ManageEventLogVMCALL()

The ManageEventLogVMCALL() is invoked by the MLE root to control the logging

feature. It consists of several sub-functions to facilitate establishment of the log itself,
configuring what events will be logged, and functions to start, stop, and clear the log.

The log itself is a circular buffer that is allocated from MLE memory. The log buffer’s

location is communicated to the STM via an array of the physical page addresses that
the MLE allocated. All pages of the log must be pinned in memory any time the log is

active. The format of the log is described in Appendix E.

Input registers:

EAX = STM_API_MANAGE_EVENT_LOG

EBX = low 32 bits of physical address of caller allocated

STM_EVENT_LOG_MANAGEMENT_REQUEST. Bits 11:0 are ignored and assumed to be zero,

making the buffer 4K aligned.

ECX = high 32 bits of physical address of caller allocated

STM_EVENT_LOG_MANAGEMENT_REQUEST.

Output registers:

CF = 0: No error, EAX set to STM_SUCCESS.

CF = 1: An error occurred, EAX holds relevant error value. See subfunction

descriptions below for details.

All other registers unmodified.

Related definitions:

STM_API_MANAGE_EVENT_LOG // See Appendix B

#define LOG_NEW_LOG 1;

#define LOG_CONFIGURE_LOG 2;

#define LOG_START_LOG 3;

#define LOG_STOP_LOG 4;

#define LOG_CLEAR_LOG 5;

#define LOG_DELETE_LOG 6;

typedef enum {

 EVT_LOG_STARTED,

 EVT_LOG_STOPPED,

 EVT_LOG_INVALID_PARAMETER_DETECTED,

 EVT_PROTECTION_EXCEPTION,

 EVT_HANDLED_PROTECTION_EXCEPTION,

VMCALL Interfaces Between MLE and STM

72

 EVT_BIOS_ACCESS_TO_UNCLAIMED_RESOURCE,

 EVT_MLE_RESOURCE_PROTECTION_GRANTED,

 EVT_MLE_RESOURCE_PROTECTION_DENIED,

 EVT_MLE_RESOURCE_UNPROTECT,

 EVT_MLE_RESOURCE_UNPROTECT_ERROR,

 EVT_MLE_DOMAIN_TYPE_DEGRADED

} EVENT_TYPE;

The parameter STM_EVENT_LOG_MANAGEMENT_REQUEST parameter structure is defined

as follows:

typedef struct {

 UINT32 SubFunctionIndex; // One of LOG_* above

 union {

 struct {

 UINT32 PageCount;

 UINT64 Pages[]; // number of elements is PageCount

 } LogBuffer;

 UINT32 EventEnableBitmap; // bitmap of EVENT_TYPE

 } ;

} STM_EVENT_LOG_MANAGEMENT_REQUEST;

SubFunctionIndex – The ManageEventLogVMCALL supports several subfunctions. The

SubFunctionIndex is used to differentiate between them.

If SubFunctionIndex == NEW_LOG, the STM will associate a set of MLE allocated pages

with the log. The value of LogBuffer.PageCount indicates the total number of

pages declared in LogBuffer.Pages[], which contains an ordered list of physical

addresses of pages that represent the log buffer. Each element of

u.LogBuffer.Pages[] is assumed to be 4K aligned (bits 11:0 are ignored and

assumed to be 0). The entire STM_EVENT_LOG_MANAGEMENT_REQUEST must fit within

a single 4K page. Each STM_LOG_ENTRY is stored at 256 byte offsets on the page.
The STM will truncate any STM_LOG_ENTRY that is greater than 256 bytes. This

subfunction will fail if the log has already been allocated.

Error conditions:

EAX = ERROR_STM_PAGE_NOT_FOUND: STM determined that one of the pages of the

event log is not within MLE owned memory.

EAX = ERROR_STM_LOG_ALLOCATED: The event log has already been allocated.

EAX = ERROR_STM_INVALID_PAGECOUNT: LogBufferPageCount is zero or the entire

STM_EVENT_LOG_MANAGEMENT_REQUEST wouldn’t fit on a single 4K page.

EAX = ERROR_STM_UNSPECIFIED: An unspecified error occurred.

If SubFunctionIndex == CONFIGURE_LOG, the value of EventEnables is a bitmap

which indicates the types of events to log. A set bit indicates that event will be
logged. A cleared bit indicates that event will not be logged. All bits not explicitly

defined are reserved and must be 0. This subfunction will fail if called with the

event log in the running state.

VMCALL Interfaces Between MLE and STM

 73

The bit numbers in u.EventEnables correspond to the EVENT_TYPE. For example,

to enable logging of handled protection exceptions, the caller would define

u.EventEnables |= (1 << EVT_HANDLED_PROTECTION_EXCEPTION).

Error conditions:

EAX = ERROR_STM_RESERVED_BIT_SET: A reserved bit was set in the bitmap.

EAX = ERROR_STM_LOG_NOT_ALLOCATED: The event log has not been allocated

EAX = ERROR_STM_LOG_NOT_STOPPED: The event log is already started

EAX = ERROR_STM_UNSPECIFIED: An unspecified error occurred.

If SubFunctionIndex == START_LOG, the logging function is started. If this is the first

time the logging function is started since the log was established or cleared, new
log entries will be placed at the beginning of the log. Otherwise, new log entries

continue are appended to the log at the next available log entry beyond the most

recent log entry. This subfunction will fail if no log buffer has been declared. This
subfunction will fail if no events are enabled for logging. This subfunction will fail if

called with the event log in the running state.

Error conditions:

EAX = ERROR_STM_NO_EVENTS_ENABLED: There are no events enabled to log

EAX = ERROR_STM_LOG_NOT_ALLOCATED: The event log hasn’t been allocated.

EAX = ERROR_STM_LOG_NOT_STOPPED: The event log is already running.

EAX = ERROR_STM_UNSPECIFIED: An unspecified error occurred.

If SubFunctionIndex == STOP_LOG, the logging function is stopped. This subfunction

will fail if called with the event log in the stopped state, or if the log has not been

allocated.

EAX = ERROR_STM_LOG_NOT_STARTED: The event log wasn’t running.

EAX = ERROR_STM_LOG_NOT_ALLOCATED: The event log wasn’t allocated.

EAX = ERROR_STM_UNSPECIFIED: An unspecified error occurred.

If SubFunctionIndex == CLEAR_LOG, all log entries will be erased and the next log

entry will be placed at the beginning of the log. This subfunction will fail if no log
buffer has been declared. This subfunction will fail if called with the event log in

the running state, or if the log has not been allocated.

EAX = ERROR_STM_LOG_NOT_STOPPED: The event log is currently running.

EAX = ERROR_STM_LOG_NOT_ALLOCATED: The event log hasn’t been allocated.

EAX = ERROR_STM_UNSPECIFIED: An unspecified error occurred.

If SubFunctionIndex == DELETE_LOG, any previously declared log is abandoned and

the association of MLE pages with an event log is dissolved. This subfunction will
fail if called with the event log in the running state.

VMCALL Interfaces Between MLE and STM

74

EAX = ERROR_STM_LOG_NOT_STOPPED: The event log is currently running.

EAX = ERROR_STM_UNSPECIFIED: An unspecified error occurred.

§

SMRAM context handling

 75

10 SMRAM context handling

10.1 SMRAM state save map generation

When an SMI occurs in the absence of an STM (e.g. opt out), the processor itself

locates the SMRAM state save area via the SMBASE value and saves register contents
to it prior to beginning execution of the SMI handler.

When an STM is running, the CPU performs a VMEXIT to transfer execution into the

STM. It is the STM’s responsibility to construct the SMRAM state save for each
processor. The STM constructs the state at the expected location (SMBASE+8000H)

using values gleaned from the VMCS or persisting in the registers themselves when

the STM begins execution.

10.1.1 STM generated SMRAM state save map

The STM generated SMRAM state save area differs slightly from the CPU generated
SMRAM state save map for Intel 64 Architecture. The STM generated SMRAM state

save area is shown below. The differences between the STM generated SMRAM state

save map and the Intel 64 architecture state save map are highlighted in yellow.

Table 10-1. STM generated SMRAM state save

Offset (Added to
SMBASE + 8000H)

Register Writable?

7FF8H CR0 No

7FF0H CR3 No

7FE8H RFLAGS Yes

7FE0H IA32_EFER No

7FD8H RIP Yes

7FD0H DR6 No

7FC8H DR7 No

7FC4H TR SEL1 No

7FC0H LDTR SEL1 No

7FBCH GS SEL1 No

7FB8H FS SEL1 No

7FB4H DS SEL1 No

7FB0H SS SEL1 No

7FACH CS SEL1 No

7FA8H ES SEL1 No

SMRAM context handling

76

Offset (Added to
SMBASE + 8000H)

Register Writable?

7FA4H IO_MISC No

7F9CH IO_MEM_ADDR No

7F94H RDI Yes

7F8CH RSI Yes

7F84H RBP Yes

7F7CH RSP Yes

7F74H RBX Yes

7F6CH RDX Yes

7F64H RCX Yes

7F5CH RAX Yes

7F54H R8 Yes

7F4CH R9 Yes

7F44H R10 Yes

7F3CH R11 Yes

7F34H R12 Yes

7F2CH R13 Yes

7F24H R14 Yes

7F1CH R15 Yes

7F1BH-7F04H Reserved No

7F02H Auto HALT Restart Field (Word) Yes

7F00H I/O Instruction Restart Field (Word) Yes

7EFCH SMM Revision Identifier Field (Doubleword) No

7EF8H SMBASE Field (Doubleword) No

7EF7H-7EE4H Reserved No

7EE0H Setting of “enabled EPT” VM-execution

control

No

7ED8H Value of EPTP VM-execution control field No

7ED7H-7EA0H Reserved No

7E9CH LDT Base (lower 32 bits) No

7E98H Reserved No

7E94H IDT Base (lower 32 bits) No

7E90H Reserved No

7E8CH GDT Base (lower 32 bits) No

7E8BH-7E44H Reserved No

7E40H CR4 No

SMRAM context handling

 77

Offset (Added to
SMBASE + 8000H)

Register Writable?

7E3FH-7DF0H Reserved No

7DE8H IO_EIP Yes2

7DE7H-7DDCH Reserved No

7DD8H IDT Base (Upper 32 bits) No

7DD4H LDT Base (Upper 32 bits) No

7DD0H GDT Base (upper 32 bits) No

7DCFH-7C00H Reserved No

NOTES:

1. The two most significant bytes are reserved.

2. IO_EIP only writeable when an unprotected context is interrupted.

10.1.2 SMM_REV_ID

The STM generated SMM_REV_ID field of the SMRAM state save has the following

format:

Figure 10-1. STM generated SMM_REV_ID

31 30 18 17 16 15 8 7 0

STM generated Reserved SMBase Reloc IO Restart Major Version Minor Version

Bit 31 of the SMM_REV_ID indicates the state save region is generated by an STM

rather than hardware.

STM generated SMRAM state save version is divided into major and minor

components. Within the scope of any given major version, subsequent minor versions

are backward compatible. No backward compatibility guarantee is given if the major
version number is different.

The SMRAM state save version described in section 10.1.1 must have a value of

80010100H. This indicates an STM generated SMM state save area with 1.0 version
number, IO Restart supported, and SMBase Relocation unsupported.

10.2 Asynchronous and synchronous SMI

There are generally two classes of SMI: Asynchronous and synchronous.

Asynchronous SMIs occur as a result of a system event that is not directly related (if
not completely orthogonal) to the currently executing code stream, e.g. a thermal trip

point can generate an SMI. Handling an asynchronous SMI does not require BIOS SMI

handler visibility into the register state of the interrupted context.

Synchronous SMIs occur directly as a result of some action by software. This occurs
when BIOS has enabled a particular SMI trigger event in the system’s chipset. When a

synchronous SMI occurs, the CPU is interrupted on the next instruction boundary

relative to the instruction that caused the SMI. The SMI handler can then inspect and

SMRAM context handling

78

in some cases modify the interrupted code’s CPU register context via the SMI state

save area. Synchronous SMI is used for patching silicon issues, emulating legacy
hardware with USB peripherals, and implementing custom BIOS interfaces. Without

this capability, it is likely that many systems would not run properly.

Synchronous SMIs occur on IO instructions to IO ports, e.g. IN, and OUT and their
variants. There are two variants of synchronous SMI trap usage. These are “normal

synchronous SMI traps”, and “synchronous SMI APIs”. This distinction is relevant to

the STM’s behavior as it relates to protected domains.

10.2.1 Normal Synchronous SMI Traps

In most cases, the SMI handler must follow the semantics of the IO instruction that
caused the trap as described in the Intel Software Developer’s Manual. This is usually

the case when the SMI handler is patching or emulating hardware. The SMI handler

should not assume any register or memory state that is not architecturally defined by
the IO instruction in question. Similarly, it should not modify any register or memory

state in the interrupted MLE that is not architecturally defined by the IO instruction in

question.

In other words, from the perspective of the interrupted context, nothing unexpected

should be observed. It should be as if the IO was serviced by hardware and there was

no SMI trap.

10.2.2 Synchronous SMI APIs

In some cases an SMI IO trap is, in practice, an interface trigger between host

software and the BIOS SMI handler rather than an emulation of IO hardware. A

common port used for this purpose is port B2H. In these cases, register state beyond
the IO instruction’s definition can be used or modified, as can memory. What state is

required by the SMI handler for this sort of trap is specific to the API that is

implemented over the IO port in question.

If an SMI-based hardware workaround requires access to state beyond the
architecturally defined state of the IO instruction in question, it is actually a

synchronous SMI API. This could be the case, for example, if the SMI handler is used

to patch driver software.

10.3 Domain protections

A goal of TXT is to make it possible to create software domains that have both

confidentiality and integrity properties (as used below, from the perspective of the

BIOS SMI handler) and to attest to the contents of such a domain. This leads to three
possible domain types:

 “Unprotected domain” – A domain with neither integrity nor confidentiality

properties.

 “Integrity protected domain” – A domain with the integrity property, but

lacking confidentiality.

SMRAM context handling

 79

 “Fully protected domain” - A domain with both integrity and confidentiality

properties.

The fourth potential combination, a domain with confidentiality but without integrity,

is not possible since integrity is required in order to maintain confidentiality.

If a protected domain is interrupted by SMI and the SMI handler is given unfettered
access to the interrupted context’s register state, there is a possibility that information

leakage or register manipulation could expose the domain to attacks from a rogue SMI

handler. The role of the STM is to facilitate preservation of integrity and confidentiality

properties from threats resulting from this situation.

Therefore, the STM must govern the access to the interrupted domain’s register state

in a way that appropriately protects the interrupted context. This requires enforcing a

set of SMRAM state save rules as well as controlling access to the extended register
state which is not included in the MLE state save area (e.g. floating point, mmx, etc.).

Protected domains provide a mechanism for the STM to limit the SMI handler’s

register access to only that which is required in the Intel instruction set architecture
(ISA) to process the IO instruction.

10.3.1 BIOS guaranteed access

The BIOS must declare all IO ports that are armed to trap to SMM in the Required

Resource List using STM_RSC_TRAPPED_IO_DESC entries, as well as any other

resources that must be accessed by the SMI handler in the course of servicing SMIs.

If this is done correctly, under no circumstance can BIOS be denied access to

the registers or other resources necessary to handle synchronous SMIs. If

the BIOS resource list is incorrect, the MLE may protect a resource needed by
BIOS, potentially resulting in platform failures. Therefore, it is critically

important that BIOS correctly declare its resource list.

10.3.2 Synchronous SMI during execution of protected software

A protected domain is free to access IO ports that are not on BIOS’ Required Resource
List, as these should not trap to SMM.

There are two error conditions that can result in a synchronous SMI trap during

execution of a protected domain:

 The protected domain accesses an IO port that is on the Required Resource List.

In this case, the STM must degrade the protections to allow the BIOS sufficient

access to process the SMI.

 The BIOS arms an SMI trap for a port that is not listed on the Required Resource

List, and this port is subsequently touched by a protected domain. In this case,

the STM must enforce the policy described below. Depending on the reason BIOS

has trapped the IO, it may not have sufficient information or access to execute the
corresponding handler.

SMRAM context handling

80

10.3.3 State save area generation and propagation rules

When an SMI occurs, the STM will create the normal SMM state save area based on

content in the interrupted domain’s VMCS and register values. The state save area
may be partially or completely scrubbed based on policy maintained by the STM in the

VMCS database (see section 10.4).

The classes of protection domains and associated rules are given in the table below.
Any bit combinations for domain type that are not listed below are reserved and

should not be used. This set of rules provides flexibility to allow for controlled IO

operations from otherwise protected domains.

Prior to the first entry into the BIOS SMI handler for each SMI event, the STM must

program the bit fields DomainType and XStatePolicy located in the

TXT_PROCESSOR_SMM_DESCRIPTOR to inform BIOS of the active protection policy. This

must be done for all logical processors. BIOS must declare all IO ports that have been
armed for SMI trapping in order to be assured that the required hardware access will

be granted by the STM. If this is done correctly, the SMI handler should not need to

be concerned with checking these fields.

Irrespective of DomainType, the STM must always correctly populate SMM_REV_ID

field. When DomainType != UNPROTECTED, all fields except for those explicitly

identified in the table below, must be cleared to 0. In any case where propagation of

state save is allowed, the STM must check the

TXT_PROCESSOR_SMM_DESCRIPTOR.SmramToVmcsRestoreRequired bit for each logical

processor prior to resuming the interrupted context. If this bit is set, the STM must

copy the SMRAM state save area back to the VMCS and register state so that any

changes made will be reflected in the resumed context. The STM must take care to
ensure proper propagation rules are followed.

The table below depicts the register scrubbing and register change propagation rules

for the different domain types. Note: EAX/AX/AL widths depend on IO width. The
table’s columns signify the following:

 “Security Attribute: Confidentiality” and “Security Attribute Integrity” columns:

indicate whether the domain has confidentiality and/or integrity properties
respectively

 “Disallowed IO: In” and “Disallowed IO: Out” columns: indicate which IO operation

(e.g. OUT Byte, IN WORD, etc) are disallowed.

 “Registers Populated” column: describes which save state registers the STM makes

accessible to the SMI handler.

 “Changes Propagated” column: shows which register changes are propagated by the
STM back to the MLE or guest of the MLE.

 “Extended State Handling” column: shows the rules for whether the extended register

state is visible/modifiable by the SMI handler.

SMRAM context handling

 81

Table 10-2. Domain types/register scrubbing and propagation rules

Domain
Type Name

Security
Attribute:
Confident
iality

Security
Attribute:
Integrity

Disallowed
IO: In

Disallowed
IO: Out

Registers
Populated

Changes
Propagated

Extended
State
Handling

Notes

UNPROTECTED

(0x00)

0 0 0 0 All All legal

changes

Visible and

modifiable by
SMI handler

INTEGRITY_

PROT_OUT_IN
(0x04)

0 1 0 0 All See notes Per VMCS DB No change

propagation for IN
from port not on

BIOS trap list

Changes to

EAX/AX/AL
propagated for IN

from port on BIOS IO
trap list.

No change
propagation for OUT

FULLY_PROT_
OUT_IN

(0x0C)

1 1 0 0 See Notes See Notes Per VMCS DB Only SMM_REV_ID
populated for any IO

not on BIOS trap list

Only SMM_REV_ID,

IO_MISC,
IO_MEM_ADDR, and

DX register populated
for IN on BIOS trap

list

Only SMM_REV_ID,

IO_MISC,
IO_MEM_ADDR, DX,

and EAX/AX/AL
populated for OUT on

BIOS trap list.

No changes
propagated for OUT.

Changes to
EAX/AX/AL

propagated for IN
from port on BIOS IO

trap list.

FULLY_PROT
(0x0F)

1 1 1 1 SMM_REV_ID None Per VMCS DB

SMRAM context handling

82

10.3.4 Asynchronous SMIs and Protected Domains

The treatment of asynchronous SMIs requires special handling in protected domains.

Asynchronous SMIs could occur at any time during execution and the STM needs to
protect the register state of interrupted protected domains. As previously noted, the

SMI handler doesn’t need access to CPU register state to process these SMIs.

The following table depicts the register scrubbing and register change propagation
rules.

Table 10-3. Asynchronous SMIs and Protected Domains

Domain Type Registers
Populated

Changes
Propagated

Extended State
Handling

UNPROTECTED (0x00) All All legal changes Visible and

modifiable by the

SMI handler

INTEGRITY_PROT_OUT_IN (0x04) SMM_REV_ID None Per VMCS DB

FULLY_PROT_OUT_IN (0x0C) SMM_REV_ID None Per VMCS DB

FULLY_PROT (0x0F) SMM_REV_ID None Per VMCS DB

10.3.5 I/O Instruction Restart

In all cases where an IO is trapped that is on the BIOS trap list and the domain type

doesn’t preclude the IO:

 IO_MISC (and IO_MEM_ADDR if IO_MISC[0] is set) area are valid.

 The value of I/O Instruction Restart field in the SMM state save area after RSM

must be honored by the STM

If an IO is trapped that is not on the BIOS trap list:

 If the domain type does not preclude the IO, the I/O Instruction Restart field

is ignored by the STM.

 If the domain type precludes the IO, but the IO in question has not been
protected by the MLE, the value of I/O Instruction Restart field in the SMM

state save area after RSM must be honored by the STM

 If the domain type precludes the IO and the IO in question has been protected
by the MLE, the I/O Instruction Restart field is ignored by the STM.

10.3.6 Domain type degradation rules

The domain degradation feature facilitates profiling of protected domains to verify that

they are operating within the restrictions imposed by their domain type.

As previously noted, the BIOS will be granted access to any resource that it specifies

in its Required Resource List. This section describes the STM’s treatment of scenarios

SMRAM context handling

 83

where there is an incompatibility between the domain type of a protected domain and

the SMI handler’s declared access to a trapped IO resource.

Synchronous SMIs result from trapped IO instructions and the BIOS SMI handler is

very likely to require some access to register state in the state save area.

Therefore, a FULLY_PROT domain should avoid IO operations that are declared by

BIOS via an STM_RSC_TRAPPED_IO_DESC. If such an IO operation occurs, the STM will

degrade the protection properties, if allowed by the DegradationPolicy, from

FULLY_PROT to FULLY_PROT_OUT_IN based on the rules given in Error! Reference

source not found.. If the DegradationPolicy doesn’t allow the degradation, the

STM will reset the platform.If any domain performs an IO operation that is declared by

BIOS to be a synchronous SMI API via an STM_RSC_TRAPPED_IO_DESC, the domain

type is degraded to UNPROTECTED, if allowed by the DegradationPolicy, otherwise

the STM resets the platform. Therefore, IO operations to these ports should be
avoided by protected domains since the effect of such an operation is to open the

domain’s TCB to the SMI handler.

If logging is enabled and the event bitmap specifies it, the STM must record all domain

type degradations using an ENTRY_EVT_MLE_DOMAIN_TYPE_DEGRADED log entry. See

Appendix E.

If in any case domain type degradation is needed, but precluded by the MLE’s

DegradationPolicy in the VMCS database, the STM must write

STM_CRASH_DOMAIN_DEGRADATION_FAILURE to the TXT.ERRORCODE register, followed

by a TXT.CMD.SYS_RESET to force a system reset. This is due to a fundamental

conflict between the platform and the specified policy.

Table 10-4 depicts the domain degradations that occur based on the starting
protected domain type (e.g. the protected domain type at the time of the SMI), the

minimum allowed domain type as specified by the MLE’s DegradationPolicy, and the

type of synchronous SMI to a trapped IO port.

The degradation logic is as follows:

 If the starting domain type permits an IN or OUT instruction and the

domain generates an IN or OUT to a trapped port on the SMI handler’s
required resource list, no degradation occurs as this is permitted by the

starting domain type.

 If the starting domain doesn’t permit an IN or OUT (e.g. a FULLY_PROT
domain) but an IN or OUT occurs to a trapped port on the SMI handler’s

required resource list, the domain will degrade to the next lower

DegradationPolicy level (e.g. FULLY_PROT_OUT_IN.) The levels are

(from highest to lowest) FULLY_PROT, FULLY_PROT_OUT_IN,
INTEGRITY_PROT_OUT_IN, UNPROTECTED.

 If an IN to a trapped SMI API port occurs, this results in a degradation to

the UNPROTECTED domain type, assuming this is permitted by the

DegradationPolicy. (If this is not permitted, the STM will trigger a

platform reset.) The SMI handler would likely need additional register

state to process the SMI and this isn’t permitted, except in the

UNPROTECTED domain type. This logic also applies similarly to OUT
instructions.

SMRAM context handling

84

 If the minimum domain type (based on DegradationPolicy) precludes a

transition to a lower protection level that would be required to process the
IO, the STM will trigger a platform reset. For example, if a FULLY_PROT

domain performs an IN to a trapped IO port but the minimum permitted

domain type is FULLY_PROT, the STM is not permitted to degrade the

protection level and can only reset the platform. This logic also applies
similarly to OUT instructions.

Table 10-4. Protected domain degradations

Starting Domain Type Min. Domain Type Result of IN:
Sync SMI Trap

Result of OUT:
Sync SMI Trap

FULLY_PROT FULLY_PROT Reset Reset

 “ ” FULLY_PROT_OUT_IN FULLY_PROT_OUT_IN FULLY_PROT_OUT_IN

 “ ” INTEGRITY_PROT_OUT_IN FULLY_PROT_OUT_IN FULLY_PROT_OUT_IN

 “ ” UNPROTECTED FULLY_PROT_OUT_IN FULLY_PROT_OUT_IN

FULLY_PROT_OUT_IN FULLY_PROT_OUT_IN FULLY_PROT_OUT_IN FULLY_PROT_OUT_IN

 “ “ INTEGRITY_PROT_OUT_IN FULLY_PROT_OUT_IN FULLY_PROT_OUT_IN

 “ “ UNPROTECTED FULLY_PROT_OUT_IN FULLY_PROT_OUT_IN

INTEGRITY_PROT_OUT_IN INTEGRITY_PROT_OUT_IN INTEGRITY_PROT_OUT_IN INTEGRITY_PROT_OUT_IN

 “ “ UNPROTECTED INTEGRITY_PROT_OUT_IN INTEGRITY_PROT_OUT_IN

UNPROTECTED UNPROTECTED UNPROTECTED UNPROTECTED

10.3.7 IA32_EFER handling

The STM must populate the value of IA32_EFER in the SMRAM state save area for

UNPROTECTED contexts. Furthermore, since the STM itself will load IA32_EFER on

VMEXIT, it must be able to determine the interrupted context’s value for IA32_EFER in

order to ensure it can be properly restored on resume. Depending on the processor

features implemented, the STM may be able to obtain the interrupted value of
IA32_EFER directly from the VMCS. In other cases, the STM will need to use the VMX

exit control for MSRs and put IA32_EFER in the list of stored MSRs to obtain the

interrupted value of IA32_EFER.

If bit 20 (Save IA32_EFER) of the IA32_VMEXIT_CTLS MSR is set, this indicates that

the processor will store the value of IA32_EFER in the VMCS on VMEXIT when the

corresponding VMEXIT control is set. The STM should enable and use this feature

when available, since it will result in better SMI performance than the alternate
mechanism described below.

If bit 20 of the IA32_VMEXIT_CTLS MSR is clear, this indicates that saving of

IA32_EFER in the VMCS is not supported. In this case, the STM should use the control
for MSRs to construct an MSR store list and add IA32_EFER to this list. It should also

ensure that IA32_EFER is restored properly using the corresponding load mechanism.

The same methods apply for VMCALLs and protection exceptions from the BIOS SMI
handler.

SMRAM context handling

 85

10.3.8 MLE root or guest extended register state

The processor supports many registers in addition to the register context represented

by the save state area (floating point, MMX, XMM, etc.); these registers also represent
potential confidentiality and integrity leaks unless properly insulated by the STM.

The STM maintains a separate extended register state policy for each VMCS in the

VMCS database. Except for UNPROTECTED domains which are open, the default STM

policy is to completely isolate the interrupted domain’s extended register state from

the BIOS SMI handler (XSTATE_SCRUB.) This policy can be modified using the

ManageVmcsDatabaseVMCALL(). See section 9.7.

Typical STM implementations will use XSAVE/XRSTOR to manage extended state save
and restore operations. For performance reasons, the MLE should explicitly turn off

extended state protections if the domain in question does not use any extended state

registers (XSTATE_READWRITE.) The scrub of extended processor state can be omitted

when the interrupted domain doesn’t use these registers.

The STM is not required to save or restore processor extended state if it is not

indicated to do so in the VMCS database. If the STM itself uses any of these registers,

this usage must be transparent to both the MLE and the BIOS SMI handler.

The expected flow of the STM regarding processor extended state is as follows:

Lookup interrupted context’s VMCS in the VMCS database

If (policy is XSTATE_SCRUB)

Save current register context using XSAVE with all bits set in the mask
Clear all register context using XRSTOR with zeroed save buffer

Endif

If (policy is XSTATE_READONLY)

Save current register context using XSAVE with all bits set in the mask
Endif

…
VMRESUME SMM guest

RSM

…

If (policy is XSTATE_SCRUB or policy is XSTATE_READONLY)

 Restore previously saved processor extended state using XRSTOR with all bits set in the

 mask
Endif

…
VMRESUME interrupted MLE

See the Intel® 64 and IA-32 Architectures Software Developer’s Manual for details

about the XSAVE/XRSTOR instructions and the processor extended state.

10.4 VMCS database

The STM cannot derive the domain type of an interrupted context directly from the

interrupted VMCS and register context. In order to make correct policy decisions the

STM needs some assistance from the MLE. The MLE provides these hints using the

ManageVmcsDatabaseVMCALL(). The STM will maintain an internal VMCS database to

SMRAM context handling

86

maintain the association between VMCS and domain type and extended state handling

policy.

During initialization, the MLE root should invoke ManageVmcsDatabaseVMCALL()to

establish the protection rules for the root VMCS that defines the MLE itself. It should

also invoke ManageVmcsDatabaseVMCALL()when the MLE root is created and each

time an MLE guest is created before the MLE guest is allowed to execute, and each
time an MLE guest is destroyed after no more execution in that MLE guest is possible.

Failure to do this can result in performance degradation and incorrect protection

policies being applied.

When an SMM exit occurs due to an SMI pin event, the STM determines whether or

not to fully populate the SMRAM state save based on the interrupted entity’s VMCS

database entry as follows:

1. The STM invokes VMREAD to obtain the interrupted entity’s controlling VMCS

pointer from the executive-VMCS pointer field of the SMI VMCS.

2. The STM searches its internal VMCS database until it locates the interrupted
context’s entry or the database has been completely searched and no match is

found.

3. If a match is found, the STM uses the matching record to determine the state

save area generation and propagation rules prior to transferring control to the
BIOS SMI handler. If no match is found, the STM must assume a type of

FULLY_PROT with extended state access denied and DegredationPolicy set to

FULLY_PROT_OUT_IN.

§

Fatal error handling

 87

11 Fatal error handling

Fatal errors detected by the STM in its own operation must result in a TXT reset.

Before the STM writes to the TXT.CMD.SYS-RESET register, it must write an error code
into the TXT.ERRORCODE register. The error code has the following format:

Table 11-1: STM Error Code Format

Bit 31 Valid must be set to 1

Bits 30 External/internal 0=processor, 1=software; STM must set

this bit to 1

Bit 16:29 Reserved must be written with all 0’s

Bit 15 AC/Monitor set to ‘1’ for VMM or STM errors, clear for
AC module errors; STM must set this bit to

1

Bit 14 MLE/STM 0=MLE, 1=STM; STM must set this bit to 1

Bit 13: 0 Error Code see Appendix D

This yields a TXT.ERRORCODE value of 1100-0000-0000-0000--11xx-xxxx-xxxx-xxxx.

Values in the set {0xC000Dxxx, 0xC000Exxx, 0xC000Fxxx} are reserved by this

specification. All other values are available to the STM writer for proprietary error

codes (0xC000Cxxx).

Fatal error handling

88

§

STM_RESOURCE_LIST

 89

12 Support of a non-TXT launch

According to the IA32 SDM, the STM can be launched without TXT.

If the STM needs to support a non-TXT launch, the STM should check the
TXT.STS.SENTER.DONE bit. If TXT.STS.SENTER.DONE is zero, it means the current

launch is a non-TXT launch.

In a non-TXT launch, the STM needs to find some information from alternate sources.
See Table 12-1.

Table 12-1: STM non-TXT launch

Information TXT launch Non-TXT launch

CPU Number BiosToOsData.NumLogProcs ACPI MADT table

PCI Express
Base

SinitToMleData.SinitMdrTable

PCIe configuration region

ACPI MCFG table

Reset register TXT.CMD.SYS_RESET ACPI FADT table

Error Code TXT.ERRORCODE N/A

§

STM_RESOURCE_LIST

90

Appendix A STM_RESOURCE_LIST

A.1 Overview

The BIOS SMI handler statically communicates its hardware resource requirements to

the STM via a byte stream located in SMRAM which contains a variable list of
hardware resources.

The MLE dynamically communicates its hardware resource protection requirements to

the STM via VMCALL-based APIs exposed by the STM to the MLE.

Both interfaces use the same data description stream format which is given in Backus-

Naur form below:

<STM_RESOURCE_LIST> ::=

 <STM_RSC_ALL>

 | <STM_RSC_DIFFERENTIATED_RESOURCE_LIST>

<STM_RSC_ALL> ::= <STM_RSC_ALL_RESOURCES_DESC> <STM_RSC_END>

<STM_RSC_DIFFERENTIATED_RESOURCE_LIST> ::=

 { <STM_RSC_DIFFERENTIATED_RESOURCE > } <STM_RSC_END>

<STM_RSC_DIFFERENTIATED_RESOURCE > ::=

 <STM_RSC_MEM_DESC>

 | <STM_RSC_IO_DESC>

 | <STM_RSC_MMIO_DESC>

 | <STM_RSC_MSR_DESC>

 | <STM_RSC_PCI_CFG_DESC>

 | <STM_RSC_TRAPPED_IO_DESC>

The root data structures for the STM_RESOURCE_LIST byte stream are given below:

// resource descriptor types are given below

#define END_OF_RESOURCES 0

#define MEM_RANGE 1

#define IO_RANGE 2

#define MMIO_RANGE 3

#define MACHINE_SPECIFIC_REG 4

#define PCI_CFG_RANGE 5

#define TRAPPED_IO_RANGE 6

#define ALL_RESOURCES 7

#define REGISTER_VIOLATION 8

#define MAX_DESC_TYPE 8

typedef struct {

 UINT32 RscType;

 UINT16 Length;

 UINT16 ReturnStatus:1; // bitfield

 UINT16 Reserved:14; // bitfield; must be 0

 UINT16 IgnoreResource:1; // bitfield

STM_RESOURCE_LIST

 91

} STM_RSC_DESC_HEADER;

RscType - This indicates the type of resource being described and is common to all

resource descriptors. This field must have a value no greater than MAX_DESC_TYPE.

Length - This indicates the length in bytes of the type of resource being described,

including both the header and data portions of the descriptor. The Length field

must always be correct, even if the IgnoreResource bit is set.

ReturnStatus – This bit is set to 1 to indicate success or cleared to 0 to indicate

failure for each resource passed into ProtectResourceVMCALL() or

UnProtectResourceVMCALL(). It is an output only and is ignored on input. This bit

is reserved for all other uses of STM_RSC_DESC_HEADER.

IgnoreResource – If this bit is set to 1, the STM will not process the data but will skip

to the next resource descriptor in the stream. If the IgnoreResource bit is set to

1, the remainder of the resource descriptor header is ignored, except for the

Length field which must be valid regardless of the state of the IgnoreResource

bit. The intent of this bit is to allow for implementation optimizations that require
statically defined resource lists that can have elements within them easily

switched on and off.

A.2 Resource types

A.2.1 STM_RSC_END
typedef struct {

 STM_RSC_DESC_HEADER Hdr;

 UINT64 ResourceListContinuation;

} STM_RSC_END;

Hdr.RscType - Must be END_OF_RESOURCES

Hdr.Length - Must be sizeof (STM_RSC_END), which is 16.

ResourceListContinuation – If ResourceListContinuation == 0 then this marks

the end of the resource list. However, if ResourceListContinuation != 0, then

the value of ResourceListContinuation indicates the physical address of the

next descriptor in the resource list. This allows for a physically discontiguous

resource list.

A.2.2 STM_RSC_MEM_DESC
typedef struct {

 STM_RSC_DESC_HEADER Hdr;

 UINT64 Base;

 UINT64 Length;

 struct {

 UINT32 RWXAttributes:3; // bitfield

 UINT32 Reserved:29; // bitfield, must be 0

 };

 UINT32 Reserved_2; // must be 0

} STM_RSC_MEM_DESC;

STM_RESOURCE_LIST

92

Hdr.RscType - Must be MEM_RANGE

Hdr.Length - Must be sizeof (STM_RSC_MEM_DESC), which is 32

Base - Indicates the physical base address of the memory range being described.

While this data structure specifies a byte granular range, this does not imply that

the STM necessarily supports byte granular memory ranges. If the STM does not

support byte granular memory ranges, then any byte claimed within a 4K page

implies the entire page is included in the STM_RESOURCE_LIST and the STM

operates on a page granular basis. The STM capabilities are exposed to the MLE

via the InitializeProtectionVMCALL() (see section 9.1).

Length - Indicates the length in bytes of the range being described. The STM will

consider a length of 0 to be an error.

RWXAttributes - When used by the BIOS SMI handler to declare required memory

resources, the RWXAttributes field indicates the access types (read, write,

execute) required by the BIOS. When used by the MLE to request protection of a

given memory range, the RWXAttributes field indicates what types of access are

prohibited. For both, when a bit is set, it indicates the request is asserted, and

when the bit is clear, the request is not asserted.

Bit 0: indicates read access

Bit 1: indicates write access

Bit 2: indicates execute access

Allowable values:

000: no access

001: Read access; no write; no execute

011: Read and write access; no execute

101: Read and execute; no write

111: Full access

A.2.3 STM_RSC_IO_DESC
typedef struct {

 STM_RSC_DESC_HEADER Hdr;

 UINT16 Base;

 UINT16 Length;

 UINT32 Reserved; // must be 0

} STM_RSC_IO_DESC;

Hdr.RscType - Must be IO_RANGE

Hdr.Length - Must be sizeof (STM_RSC_IO_DESC), which is 16

STM_RESOURCE_LIST

 93

Base - Indicates the base IO port number of the range being described

Length - Indicates the length in bytes of the range being described. The STM will

consider a length of 0 to be an error.

In the case of a BIOS Required Resource List, this type is used to indicate the IO ports

that the BIOS SMI handler may read from/write to as part of its operation. This is

distinct from the IO ports that BIOS configures to trap into the SMI handler (those are
specified by the STM_RSC_TRAPPED_IO_DESC type).

A.2.4 STM_RSC_MMIO_DESC
typedef struct {

 STM_RSC_DESC_HEADER Hdr;

 UINT64 Base;

 UINT64 Length;

 struct {

 UINT32 RWXAttributes:3; // bitfield

 UINT32 Reserved:29; // bitfield, must be 0

 };

 UINT32 Reserved_2; // must be 0

} STM_RSC_MMIO_DESC;

Hdr.RscType - Must be MMIO_RANGE

Hdr.Length - Must be sizeof (STM_RSC_MMIO_DESC), which is 32

Base - Indicates the physical base address of the range being described. While this

data structure specifies a byte granular range, this does not imply that the STM

necessarily supports byte granular MMIO ranges. If the STM does not support byte
granular MMIO, then any byte claimed within a 4K page implies the entire page is

included in the STM_RESOURCE_LIST and the STM operates on a page granular

basis. The STM capabilities are exposed to the MLE via the

InitializeProtectionVMCALL() (see section 9.1).

Length - Indicates the length in bytes of the range being described. The STM will

consider a length of 0 to be an error.

RWXAttributes - When used by the BIOS SMI handler to declare required MMIO

resources, the RWXAttributes field indicates the access types (read, write,

execute) required by the BIOS. When used by the MLE to request protection of a

given MMIO range, the RWXAttributes field indicates what types of access are

prohibited. For both, when a bit is set, it indicates the request is asserted, and
when the bit is clear, the request is not asserted.

Bit 0: indicates read access

Bit 1: indicates write access

Bit 2: indicates execute access

Allowable values:

STM_RESOURCE_LIST

94

000: no access

001: Read access; no write; no execute

011: Read and write access; no execute

101: Read and execute; no write

111: Full access

A.2.5 STM_RSC_MSR_DESC
typedef struct {

 STM_RSC_DESC_HEADER Hdr;

 UINT32 MsrIndex;

 struct {

 UINT8 Attributes:1; //Bit 0 is VMX Root mode request

 UINT8 Reserved1:7;

 };

 UINT8 Reserved2[3];

 UINT64 ReadMask;

 UINT64 WriteMask;

} STM_RSC_MSR_DESC;

Hdr.RscType - Must be MACHINE_SPECIFIC_REG

Hdr.Length - Must be sizeof (STM_RSC_MSR_DESC), which is 32

MsrIndex - Indicates which MSR is being described

Attributes – Describes handling options for this MSR.

Bit 0: Indicates that the MSR requires VMX Root Mode execution (for example

IA32_BIOS_UPDT_TRIG MSR.) The STM will configure the MSR bitmap such that
an SMI handler’s access of this MSR will trigger a VM Exit. The STM will then

process the request on behalf of the SMI handler guest. If a GP fault occurs as a

result of the STM’s access, the STM will return control to the BIOS exception
handler.

ReadMask - Indicates for which bits in the MSR read access (if from BIOS SMI handler)

or read protection (if from MLE) is being requested. If the STM does not support
bit granular MSR resource control, then any bit claimed within the whole MSR

implies the entire MSR is included in the STM_RESOURCE_LIST and the STM

operates on a whole MSR granular basis. The STM capabilities are exposed to the

MLE via the InitializeProtectionVMCALL() (see section 9.1).

WriteMask - Indicates for which bits in the MSR write access (if from BIOS SMI

handler) or write protection (if from MLE) is being requested. If the STM does not

support bit granular MSR resource control, then any bit claimed within the whole

MSR implies the entire MSR is included in the STM_RESOURCE_LIST and the STM

operates on a whole MSR granular basis. The STM capabilities are exposed to the

MLE via the InitializeProtectionVMCALL() (see section 9.1).

STM_RESOURCE_LIST

 95

A.2.6 STM_RSC_PCI_CFG_DESC
typedef struct {

 STM_RSC_DESC_HEADER Hdr;

 struct {

 UINT16 RWAttributes:2; // bitfield

 UINT16 Reserved:14; // bitfield; must be 0

 };

 UINT16 Base;

 UINT16 Length;

 UINT8 LastNodeIndex;

 UINT8 OriginatingBusNumber;

 STM_PCI_DEVICE_PATH_NODE PciDevicePath[LastNodeIndex + 1];

} STM_RSC_PCI_CFG_DESC;

Hdr.RscType - Must be PCI_CFG_RANGE

Hdr.Length – Must be the size in bytes of the whole STM_RSC_PCI_CFG_DESC. The

statically sized portion is 16 bytes. The size of the PciDevicePath array varies

depending on how many elements are in the array. Each element of the

PciDevicePath array is 6 bytes long. Therefore Hdr.Length must be assigned the

value 16 + (LastNodeIndex + 1) * 6.

RWAttributes - When used by the BIOS SMI handler to declare required PCI

configuration resources, the RWAttributes field indicates the access types (read,

write) required by the BIOS. When used by the MLE to request protection of a

given PCI configuration resource, the RWAttributes field indicates what types of

access are prohibited. For both, when a bit is set, it indicates the request is

asserted, and when the bit is clear, the request is not asserted.

Bit 0: indicates read access

Bit 1: indicates write access

Base - Indicates the offset of the first PCI configuration register being described.

Length - Indicates the number of bytes of PCI configuration space. The STM will

consider a length of 0 to be an error.

LastNodeIndex - Indicates the array index of the last element in the array of

STM_PCI_DEVICE_PATH_NODE.

OriginatingBusNumber- Indicates the starting bus number for the PCI device

PciDevicePath - Indicates which PCI function is associated with the range. The

definition for STM_PCI_DEVICE_PATH_NODE is taken from section 9.3.2.1 of the

Unified Extensible Firmware Interface Specification, Version 2.3, Errata C. This
specification can be obtained from

http://www.uefi.org/specs/download/UEFI_Spec_2_3_Errata_C.pdf.

http://www.uefi.org/specs/download/UEFI_Spec_2_3_Errata_C.pdf

STM_RESOURCE_LIST

96

For implementation convenience, the STM_PCI_DEVICE_PATH_NODE definition given

here is identical to the referenced UEFI specification definition. In the event that
the UEFI definition diverges from the STM definition due to future changes in

either specification, the STM usage will remain as described in this specification. In

other words, for the purposes of STM, the definition given here is normative.

typedef struct {

 UINT8 Type; // must be 1, indicating Hardware Device Path

 UINT8 Subtype; // must be 1, indicating PCI

 UINT16 Length; // sizeof(STM_PCI_DEVICE_PATH_NODE) which is 6

 UINT8 PciFunction;

 UINT8 PciDevice;

} STM_PCI_DEVICE_PATH_NODE;

The PciDevicePath field is an array of STM_PCI_DEVICE_PATH_NODE structures.

The array has LastNodeIndex + 1 elements, where the smallest legal

PciDevicePath array has a single element (LastNodeIndex == 0). In the event

that there is more than one element in the array, all elements in the array except
for the last one represent bridge devices. The last element of the array always

indicates the PCI device and function described by this STM_RSC_PCI_CFG_DESC.

There are two differences between an STM PCI device path and a UEFI PCI device
path:

1) The STM PCI device path length is given explicitly by LastNodeIndex

+ 1, while UEFI uses an end marker node.

2) The STM PCI device path assumes a system topology with legacy PCI
configuration addresses at io ports 0xCF8 and 0xCFC; and where the

PCIe* memory mapped configuration base address is derived from the

hardware by SINIT and given to the MLE via the PCIe Memory
Descriptor Record in the SINIT to MLE data table portion of the TXT

heap. In contrast, UEFI requires that PCI device paths begin with an

ACPI device path node to identify the host bridge. Using an ACPI node
would be contrary to STM security objectives.

A.2.7 STM_RSC_TRAPPED_IO_DESC
typedef struct {

 STM_RSC_DESC_HEADER Hdr;

 UINT16 Base;

 UINT16 Length;

 struct {

 UINT16 In:1; // bitfield

 UINT16 Out:1; // bitfield

 UINT16 Api:1; // bitfield

 UINT16 Reserved1:13; // bitfield; must be 0

 };

 UINT16 Reserved2;

} STM_RSC_TRAPPED_IO_DESC;

Hdr.RscType - Must be TRAPPED_IO_RANGE

Hdr.Length - Must be sizeof (STM_RSC_TRAPPED_IO_DESC), which is 24.

STM_RESOURCE_LIST

 97

Base - Indicates the physical base address of the range being described

Length - Indicates the length in bytes of the range being described. The STM will

consider a length of 0 to be an error.

Out - Indicates the BIOS traps OUT operations to the specified port. This information

is used by the STM when deriving state save generation rules. See section 10.3.3.

In - Indicates the BIOS traps IN operations from the specified port range. This

information is used by the STM when deriving state save generation and

propagation rules. See section 10.3.3.

Api - Indicates the port range in question is a synchronous SMI API. See section

10.2.2

The TRAPPED_IO_RANGE is different than other types of resources in that it doesn’t

describe resources consumed or reserved; rather it describes specific hardware

behavior associated with IO ports that are enabled to generate synchronous SMIs. An

instance of STM_RSC_TRAPPED_IO_DESC describes an IO port(s) that will generate

synchronous SMIs when accessed from non-SMM software. If the SMI handler must

also access the port, then the port must also be described as a normal IO Range. The

MLE should never use STM_RSC_TRAPPED_IO_DESC when calling

ProtectResourceVMCALL(). Such a protection request makes no sense and must

always be denied by the STM.

A.2.8 STM_RSC_ALL_RESOURCES_DESC
typedef struct {

 STM_RSC_DESC_HEADER Hdr;

} STM_RSC_ALL_RESOURCES_DESC;

Hdr.RscType - Must be ALL_RESOURCES

Hdr.Length - Must be sizeof (STM_RSC_ALL_RESOURCES_DESC), which is 8.

An instance of STM_RSC_ALL_RESOURCES_DESC is shorthand for describing all resources

not explicitly reserved by the BIOS. For high security environments, it facilitates a

simple method for an MLE to request “protect all”, or “unprotect all” and alleviates the
need to build complete resource lists for all things not claimed by BIOS. It is also

useful for testing the correctness of the BIOS required resource list.

BIOS should not include STM_RSC_ALL_RESOURCES_DESC in the required resources list

as this would render the entire STM moot.

A.2.9 STM_REGISTER_VIOLATION_DESC

typedef struct {

STM_RSC_DESC_HEADER Hdr;

 UINT32 RegisterType; // RegisterCr0, RegisterCr2…

 UINT32 Reserved;

 UINT64 ReadMask;

STM_RESOURCE_LIST

98

UINT64 WriteMask;

} STM_REGISTER_VIOLATION_DESC;

The STM_REGISTER_VIOLATION_DESC is used solely for logging improper control

register accesses (CR0, CR2, etc) by the SMI handler. Unlike the resource type
descriptors, it is not used to specify any resources to be protected or resources that

the SMI handler requires access to.

The following enum lists the possible values for RegisterType.

#typedef enum {

 CR0,

 CR2,

 CR3,

 CR4,

 CR8

} REGISTER_VIOLATION_TYPE;

STM_RESOURCE_LIST

 99

§

VMCALL API Numbers

100

Appendix B VMCALL API Numbers
// API number convention: BIOS facing VMCALL interfaces have bit 16 clear

#define STM_API_MAP_ADDRESS_RANGE 0x00000001

#define STM_API_UNMAP_ADDRESS_RANGE 0x00000002

#define STM_API_ADDRESS_LOOKUP 0x00000003

#define STM_API_RETURN_FROM_PROTECTION_EXCEPTION 0x00000004

// API number convention: MLE facing VMCALL interfaces have bit 16 set

#define STM_API_START 0x00010001

#define STM_API_STOP 0x00010002

#define STM_API_PROTECT_RESOURCE 0x00010003

#define STM_API_UNPROTECT_RESOURCE 0x00010004

#define STM_API_GET_BIOS_RESOURCES 0x00010005

#define STM_API_MANAGE_VMCS_DATABASE 0x00010006

#define STM_API_INITIALIZE_PROTECTION 0x00010007

#define STM_API_MANAGE_EVENT_LOG 0x00010008

VMCALL API Numbers

 101

§

Return codes

102

Appendix C Return codes
#define STM_SUCCESS 0x00000000

#define SMM_SUCCESS 0x00000000

// all error codes have bit 31 set

// STM errors have bits 31 and 16 set

#define ERROR_STM_SECURITY_VIOLATION 0x80010001

#define ERROR_STM_CACHE_TYPE_NOT_SUPPORTED 0x80010002

#define ERROR_STM_PAGE_NOT_FOUND 0x80010003

#define ERROR_STM_BAD_CR3 0x80010004

#define ERROR_STM_PHYSICAL_OVER_4G 0x80010005

#define ERROR_STM_VIRTUAL_SPACE_TOO_SMALL 0x80010006

#define ERROR_STM_UNPROTECTABLE_RESOURCE 0x80010007

#define ERROR_STM_ALREADY_STARTED 0x80010008

#define ERROR_STM_WITHOUT_SMX_UNSUPPORTED 0x80010009

#define ERROR_STM_STOPPED 0x8001000A

#define ERROR_STM_BUFFER_TOO_SMALL 0x8001000B

#define ERROR_STM_INVALID_VMCS_DATABASE 0x8001000C

#define ERROR_STM_MALFORMED_RESOURCE_LIST 0x8001000D

#define ERROR_STM_INVALID_PAGECOUNT 0x8001000E

#define ERROR_STM_LOG_ALLOCATED 0x8001000F

#define ERROR_STM_LOG_NOT_ALLOCATED 0x80010010

#define ERROR_STM_LOG_NOT_STOPPED 0x80010011

#define ERROR_STM_LOG_NOT_STARTED 0x80010012

#define ERROR_STM_RESERVED_BIT_SET 0x80010013

#define ERROR_STM_NO_EVENTS_ENABLED 0x80010014

#define ERROR_STM_OUT_OF_RESOURCES 0x80010015

#define ERROR_STM_FUNCTION_NOT_SUPPORTED 0x80010016

#define ERROR_STM_UNPROTECTABLE 0x80010017

#define ERROR_STM_VMCS_PRESENT 0x80010018

#define ERROR_STM_UNSUPPORTED_MSR_BIT 0x80010019

#define ERROR_STM_UNSPECIFIED 0x8001FFFF

// SMM errors have bits 31 and 17 set

#define ERROR_SMM_BAD_BUFFER 0x80020001

#define ERROR_SMM_UNSPECIFIED 0x8002FFFF

// Errors that apply to both have bits 31, 15, 16, and 17 set

#define ERROR_INVALID_API 0x80038001

#define ERROR_INVALID_PARAMETER 0x80038002

Return codes

 103

§

STM TXT.ERRORCODE crash codes

104

Appendix D STM TXT.ERRORCODE

crash codes

#define STM_CRASH_PROTECTION_EXCEPTION 0xC000F001

#define STM_CRASH_PROTECTION_EXCEPTION_FAILURE 0xC000F002

#define STM_CRASH_DOMAIN_DEGRADATION_FAILURE 0xC000F003

#define STM_CRASH_BIOS_PANIC 0xC000E000

STM TXT.ERRORCODE crash codes

 105

§

Event log

106

Appendix E Event log

E.1 Overview

This section defines the format and associated data structures of the STM’s event log.

Section 9.8 describes the STM function ManageEventLogVMCALL, which is used to

configure and control the STM’s logging capabilities.

The event type EVT_HANDLED_PROTECTION_EXCEPTION indicates there was a protection

exception that occured that was handled by the BIOS provided protection exception

handler. Note: Any protection exceptions that are not handled result in a platform
reset.

The event type EVT_BIOS_ACCESS_TO_UNCLAIMED_RESOURCE indicates that the BIOS

has accessed a hardware resource that was not claimed via the STM_RESOURCE_LIST

indicated by BiosHwResourceRequirements (see section 6.1). The resource in question

was also unclaimed by the MLE. The STM will allow this BIOS access. If logging of this

event is enabled, the STM must log the first access to the resource in question. It

may, but is not required to, log subsequent BIOS accesses to the same resource.

The event type EVT_MLE_RESOURCE_PROTECTION_GRANTED indicates that the STM added

the resource to its list of resources to be protected.

The event type EVT_MLE_RESOURCE_UNPROTECT indicates that the STM has removed the

resource from its protected resource list.

The event type EVT_MLE_RESOURCE_UNPROTECT_ERROR indicates that the STM

encountered an error while attempting to unprotect a resource.

The STM will map into its own address space the array of physical pages in the order
they are given by the MLE. This linear space then represents a contiguous array of

STM_LOG_ENTRY[n], where n is the number of entries that will fit into the pages

provided by the MLE for the log. This array is used in a circular manner. The first entry

written is to STM_LOG_ENTRY[0], then next to STM_LOG_ENTRY[1], etc. When the end

of the log is reached (STM_LOG_ENTRY[n-1]), the STM returns to the beginning of the

log and writes the next entry at the beginning (STM_LOG_ENTRY[0]).

Related definitions:

typedef struct {

 LOG_ENTRY_HEADER Hdr;

 LOG_ENTRY_DATA Data;

} STM_LOG_ENTRY;

typedef struct {

 UINT32 EventSerialNumber;

 UINT16 Type; // EVENT_TYPE

 struct {

 UINT16 Lock :1; // bitfield

Event log

 107

 UINT16 Valid :1; // bitfield

 UINT16 ReadByMle :1; // bitfield

 UINT16 Wrapped :1; // bitfield

 UINT16 Reserved :12; // bitfield

 };

} LOG_ENTRY_HEADER;

EventSerialNumber is a monotonically increasing event count number. The first event

to occur when the event log is created is given the value of EventSerialNumber =

0. The second event is given the value of EventSerialNumber = 1. The third,

EventSerialNumber = 2. Etc.

Type indicates what type of event is being logged. Type must be a member of

EVENT_TYPE (see section 9.8).

Lock is a semaphore used to prevent concurrent access to any given record by STM

and MLE. When the STM or MLE wishes to access any given record (read or write),

it must acquire the Lock semaphore using the BTS instruction. No updates to any

record are allowed unless carry flag indicates that the semaphore was not locked
when the BTS instruction was executed.

In all cases the Lock bit in the header must be acquired before reading or writing

contents of any given event log entry. This is true for both the MLE and the STM.

To avoid contention, both the STM and the MLE must avoid acquiring the Lock bit

for more than one record at a time.

Valid is clear (0) indicates the STM_LOG_ENTRY is not valid. All contents of it should be

ignored by the MLE.

ReadByMle must be cleared (0) by the STM when a record is initially created. When

the MLE reads the entry, it must first acquire the Lock, and then set (1)

ReadByMle before releasing the Lock. The ReadByMle bit is used by the STM to

detect when the event log has wrapped and unread events are being overwritten.

Wrapped indicates that the log has wrapped and a new entry has overwritten another

valid entry that had not been read by the MLE.

typedef union {

 ENTRY_EVT_LOG_STARTED Started;

 ENTRY_EVT_LOG_STOPPED Stopped;

 ENTRY_EVT_LOG_INVALID_PARAM InvalidParam;

 ENTRY_EVT_LOG_PROTECTION_EXCEPTION ProtectionException;

 ENTRY_EVT_LOG_HANDLED_PROTECTION_EXCEPTION HandledProtectionException;

 ENTRY_EVT_BIOS_ACCESS_UNCLAIMED_RSC BiosUnclaimedRsc;

 ENTRY_EVT_MLE_RSC_PROT_GRANTED MleRscProtGranted;

 ENTRY_EVT_MLE_RSC_PROT_DENIED MleRscProtDenied;

 ENTRY_EVT_MLE_RSC_UNPROT MleRscUnprot;

 ENTRY_EVT_MLE_RSC_UNPROT_ERROR MleRscUnprotError;

 ENTRY_EVT_MLE_DOMAIN_TYPE_DEGRADED MleDomainTypeDegraded;

} LOG_ENTRY_DATA;

typedef struct {

 UINT32 Reserved;

} ENTRY_EVT_LOG_STARTED;

typedef struct {

Event log

108

 UINT32 Reserved;

} ENTRY_EVT_LOG_STOPPED;

typedef struct {

 UINT32 VmcallApiNumber;

} ENTRY_EVT_LOG_INVALID_PARAM;

typedef struct {

 STM_RSC Resource;

} ENTRY_EVT_LOG_PROTECTION_EXCEPTION;

typedef struct {

 STM_RSC Resource;

} ENTRY_EVT_LOG_HANDLED_PROTECTION_EXCEPTION;

typedef struct {

 STM_RSC Resource;

} ENTRY_EVT_BIOS_ACCESS_UNCLAIMED_RSC;

typedef struct {

 STM_RSC Resource;

} ENTRY_EVT_MLE_RSC_PROT_GRANTED;

typedef struct {

 STM_RSC Resource;

} ENTRY_EVT_MLE_RSC_PROT_DENIED;

typedef struct {

 STM_RSC Resource;

} ENTRY_EVT_MLE_RSC_UNPROT;

typedef struct {

 STM_RSC Resource;

} ENTRY_EVT_MLE_RSC_UNPROT_ERROR;

typedef struct {

 UINT64 VmcsPhysPointer;

 UINT8 ExpectedDomainType;

 UINT8 DegradedDomainType;

} ENTRY_EVT_MLE_DOMAIN_TYPE_DEGRADED;

Event log

 109

E.2 Event Logging Flow

The flow chart below describes the algorithm the STM follows when logging events.

The Get_Next_Empty algorithm pseudo-code follows this diagram.

START

i = 0

count = 0

Wait_for_event

Get_Next_Empty(*

EvtLog)

StmLogEntry[i].Hdr.Valid ==1

&&

StmLogEntry[i].Hdr.ReadByMle == 0

yes

StmLogEntry[i].Hdr.Wrapped = 0no

Fill in

StmLogEntry[i].Data

StmLogEntry[i].Hdr.Wrapped = 1

StmLogEntry[i].Hdr.ReadByMle = 0,

StmLogEntry[i].Hdr.Valid = 1,

StmLogEntry[i].Hdr.EventCount = count

StmLogEntry[i].Hdr.Lock = 0

count = count + 1

Slot Available

Return

yes

no

No Suitable Slot

Event bitmap
allows logging

this event?

yes

no

Event log
started?

no

yes

Event fits in
log?

Event log

110

Figure E-1: Logging flowchart

BEGIN - informative content – non-normative

This is an example of one way to find the next slot for a new event

STM_LOG_ENTRY *GetNextEmpty(MLE_EVENT_LOG_STRUCTURE *EventLog)

{

 Step 1: Look for an Invalid Entry

 FOR each page in array of event log pages

 FOR each event log entry on the page

 IF successful testing and setting the event’s lock THEN

 Check header for valid/invalid

 IF header is invalid, THEN

 Return this log entry.

 ELSE

 Reset the lock and check next event log entry on page

 END IF

 ELSE (unsuccessful test/set on lock)

 Check next event log entry on page

 END IF

 END FOR

 END FOR

 // No invalid entries found, proceed to next step.

 Step 2: Look for entry already read by MLE

 FOR each page in array of event log pages

 FOR each event log entry on the page

 IF successful testing and setting the event log entries lock THEN

 Check header for “read by the MLE”

 IF the entry has been read by the MLE, THEN

Event log

 111

 Return this log entry.

 ELSE

 Reset the lock and check next event log entry on page

 END IF

 ELSE (unsuccessful test/set on lock)

 Check next event log entry on page

 END IF

 END FOR

 END FOR

 // No entries were already read by MLE, proceed to next step.

 Step 3: Overwrite an event not read by MLE

 FOR each page in array of event log pages

 FOR each event log entry on the page

 IF successful testing and setting the event log entries lock THEN

 Check header for event log not wrapped indicator

 IF the entry‘s log not wrapped indicator is not set THEN

 Return this log entry.

 ELSE

 Reset the lock and check next event log entry on page

 END IF

 ELSE (unsuccessful test/set on lock)

 Check next event log entry on page

 END IF

 END FOR

 END FOR

 // No entries had log not wrapped indicator, proceed to next step.

 Step 4: Take the first unlocked event

 FOR each page in array of event log pages

 FOR each event log entry on the page

Event log

112

 IF successful testing and setting the event log entries lock THEN

 Return this log entry.

 ELSE

 Reset the lock and check next event log entry on page

 END IF

 END FOR

 END FOR

 // No suitable event log entries can be used

 return NULL

}

END - informative content – non-normative

Event log

 113

§

Debugging/ Development Functions

114

Appendix F Debugging/

Development Functions

F.1 Overview

This section defines a set of functions that are recommended for development of an

STM, the SMI handler or the MLE. These functions are for the purpose of
development and should be removed from production components.

To assist development, debugging and validation of all components (SMI handler, STM

and MLE), the SMI handler should implement the following features.

The SMI handler shall provide a hook to allow the MLE to cause changes to the SMI

handler required resources and to cause the SMI handler to access an arbitrary

resource. This feature must be implemented such that it exists only in debug versions

of the SMI handler (e.g., #ifdef DEBUG type statements). It should be removed from
production BIOS implementations. This feature shall be implemented using the

SMI_CMD port (i.e., 0xB2H). An MLE application sends these commands to the SMI

handler by writing to the SMI_CMD port. Parameters will be passed using CPU
registers. The SMI handler developer shall determine the specific command (the data

of the out instruction) used. This command instructs a debug SMI handler to perform

the following development / debug / validation operations.

NOTE: Access to SMI_CMD should generally be done from an unprotected domain. A

different domain type may cause STM to block the input or output registers.

There will be three types of commands. The first command type is used to modify the
BIOS resource list. This command can only be executed prior to the first call to

ProtectResourceVMCALL() and prior to the first call to GetBiosResourcesVMCALL(). The

second command type is used to request that the SMI handler access a particular
resource. The third command type is used to load a new STM image into MSEG. This

command can only be executed before launching the MLE.

Commands will be differentiated by the value written to the SMI_CMD port and

additional function number passed via APM_STS port (0xB3)

Command values will be exposed to the caller via the BIOS extended data from the

TXT heap in a manner identical to BIOS services specified in section 4.3.

1. HandleBiosResourcesCmd - respective SMI_CMD value will be displayed at offset
ReservedForDebug[0] in the BIOS extended Data in the TXT heap. See Error!

Reference source not found..

2. AccessResourcesCmd – respective SMI_CMD value will be displayed at offset
ReservedForDebug[1] in the BIOS extended Data in the TXT heap. See Error!

Reference source not found..

Debugging/ Development Functions

 115

3. LoadStmCmd - respective SMI_CMD value will be displayed at offset

ReservedForDebug[2] in the BIOS extended Data in the TXT heap.

All debug commands will share the following input/output format specification:

12.1.1.1.1 Input registers:

The SMI_CMD port will contain the command value. APM_STS port will contain the

function value. The Debug SMI handler will branch based on SMI_CMD:APM_STS 16-
bit value to the appropriate handler function.

ECX:EBX will contain the 64-bit physical address of the caller allocated buffer. Buffer

content and structure will be function-specific. The buffer must be 4KB page aligned

and at least 4KB in size. The STM will return an error if this condition is not met.

12.1.1.1.2 Output registers:

CF = 0, EAX = SMM_SUCCESS: NO error

CF = 1, EAX = Error code – see related definitions later in this section.

F.2 Commands

F.2.1 HandleBiosResourcesCmd

HandleBiosResourcesCmd will have the following functions:

 AddRuntimeResourcesFunc. This function will update the BIOS-provided

resource list. It will merge new resources with existing records if possible

observing attributes or will append new resources to the existing list if a
merge is not possible. In cases when given new resource matches exactly one

of the records with the exception of IgnoreResource bit, the record will be

updated to the state of IgnoreResource bit of the new resource. This allows
the caller to selectively control BIOS resources by asserting of clearing of the

IgnoreResource bit on record-by-record basis. This function fails if

ProtectResourcesVMCALL() has been successfully called.

 ReadBiosResourcesFunc. This function will read the whole list of BIOS

resources into the caller’s buffer.

 ReplaceBiosResourcesFunc. This function will instruct the SMI handler to

replace the entire existing BIOS Resource list with the one pointed to by the
input buffer. Though the same functionality can be achieved with

AddRuntimeResourcesFunc function, this function may be simpler to use for

basic testing. This function fails if ProtectResourcesVMCALL() has been
successfully called.

F.2.1.1 AddRuntimeResourcesFunc

The input buffer must contain the TXT_BIOS_DEBUG structure where the data field

must be a list of resource structures ended by the STM_RSC_END structure.

Debugging/ Development Functions

116

UINT8 Data[] = RESOURCE List[];

The function will use BufferSize value to prevent endless looping and a crash in case

of a list not being terminated by STM_RSC_END structure. The function will also make a

plausible guess about the validity of the passed-in buffer – if the value of BufferSize field appears

to be too large, which is most likely the result of a caller error, it will return

SMM_INVALID_BUFFER_SIZE error. The 16KB value selected as maximum buffer size is

presumed to be sufficiently large for any real BIOS.

Return values (EAX):

SMM_SUCCESS // No errors

SMM_INVALID_RSC // Invalid resource structure detected

SMM_INVALID_BUFFER_SIZE // BufferSize value exceeds 16KB

SMM_INVALID_LIST // Resource list is not terminated

SMM_OUT_OF_MEMORY // BIOS resource memory exhausted

SMM_AFTER_INIT // Illegal after ProtectResourcesVMCALL

ERROR_SMM_UNSPECIFIED // An unspecified error occurred

F.2.1.2 ReadBiosResourcesFunc

The input buffer must contain a TXT_BIOS_DEBUG structure where the Data field is

empty.

Upon return, the buffer will contain a list of resource structures terminated by STM_

RSC_END structure.

UINT8 Data[] = RESOURCE List[];

In the case of the SMM_BUFFER_TOO_SHORT error, the BufferSize field will be updated with the
minimal buffer size needed to read all resources.

Return values (EAX):

SMM_SUCCESS // No errors

SMM_INVALID_BUFFER_SIZE // BufferSize value exceeds 16KB

SMM_BUFFER_TOO_SHORT // Insufficient buffer size.

ERROR_SMM_UNSPECIFIED // An unspecified error occurred

F.2.1.3 ReplaceBiosResourcesFunc

The semantics of this function are identical to the semantics of the

AddRuntimeResourcesFunc function.

Debugging/ Development Functions

 117

F.2.2 AccessResourcesCmd

This command doesn’t have sub-functions – the value of APM_STS port will be

ignored.

AccessResourcesCmd instructs the SMI handler debug function to access all the

resources in the resource list pointed to by ECX:EBX. Only the following resource

types are supported: MEM_RANGE, IO_RANGE, MMIO_RANGE,
MACHINE_SPECIFIC_REG, PCI_CFG_RANGE. The SMI handler debug function fails if it

encounters a resource record that is not one of these. As this is only a debug function,

the SMI handler is allowed latitude in how it handles this. It may process and execute

each resource record then fail if it encounters an invalid one, or it may scan all
resource records first before processing.

Unless the SMI handler debug function encounters an invalid resource type, it must

process every resource record. (i.e., it must continue even if the access results in an
exception) Upon processing each resource record, the SMI handler debug function will

set the record’s ReturnStatus field.

This function will interpret the ReturnStatus and IgnoreResource fields of each of
resource header in the following way:

 IgnoreResource (note the repurposing of this field) will indicate the requested

operation : 1 = write; 0 = read

 ReturnStatus will indicate result of operation : 0 = SMI exception handler was

not invoked as a result of operation; 1 = SMI exception handler was invoked.

For each resource, the SMI handler debug function will perform the appropriate access
for each element of the resource record. (I.e., if the resource is a memory type and

write operation is requested, then the SMI handler debug function will write to every

address starting at address pointed to by the Base field and writing Length bytes).

The input buffer must contain a TXT_BIOS_DEBUG structure where its Data field must

be a list of resource structures ended by STM_RSC_END structure.

UINT8 Data[] = RESOURCE List[];

Upon return ReturnStatus filed is updated according to result of operation.

Return values (EAX):

SMM_SUCCESS // No errors

SMM_INVALID_RSC // Invalid resource structure detected

SMM_INVALID_BUFFER_SIZE // BufferSize value exceeds 16KB

SMM_INVALID_LIST // Resource list is not terminated

ERROR_SMM_UNSPECIFIED // An unspecified error occurred

Debugging/ Development Functions

118

F.2.3 LoadStmCmd

This command doesn’t have sub-functions – the value of the APM_STS port will be

ignored.

LoadStmCmd is used to update STM image in MSEG at run time. Its semantic is

identical to the semantic of UpdateStmCmd. In addition to the errors returned by

UpdateStmCmd, this command will return an error if InitializeProtectionVMCALL() has
been successfully called.

Return values (EAX):

SMM_AFTER_INIT // Illegal after InitializeProtectionVMCALL

ERROR_SMM_UNSPECIFIED // An unspecified error occurred

12.1.1.1.3 Related Definitions

#define AddRuntimeResourcesFunc 0

#define ReadBiosResourcesFunc 1

#define ReplaceBiosResourcesFunc 2

typedef union {

 STM_RSC_MEM_DESC ResMem;

 STM_RSC_IO_DESC IoMem;

 STM_RSC_MMIO_DESC MmioMem;

 STM_RSC_MSR_DESC MsrMem;

 STM_RSC_PCI_CFG_DESC PciCfgMem;

 STM_RSC_TRAPPED_IO_DESC TrappedIoMem;

 STM_RSC_END RscEnd;

} RESOURCE;

typedef struct_{

 UINT32 BufferSize;

 UINT32 Reserved;

 UINT8 Data[];

} TXT_BIOS_DEBUG;

#define SMM_SUCCESS 0x0

#define SMM_INVALID_RSC 0x80020004

#define SMM_INVALID_BUFFER_SIZE 0x80020005

#define SMM_BUFFER_TOO_SHORT 0x80020006

#define SMM_INVALID_LIST 0x80020007

#define SMM_OUT_OF_MEMORY 0x80020008

#define SMM_AFTER_INIT 0x80020009

