
A Guide to Kafka
Optimizations and
Benchmarks

2A Guide to Kafka Optimizations and Benchmarks

Authors
Debashis Paul
Cloud Solutions Engineer

Roberto Baturoni
Cloud Solutions Engineer

Collaborators
David Shade
Cloud Solutions Architect

William Fowler
Cloud Solutions Architect

Jun Chen
Cloud Software Development Engineer

Sunny Wang
Cloud Software Development Engineer

Acknowledgments
Marco Carlo Changho
Performance Marketing Engineer

Padma Apparao
Principal Engineer, AI and Cloud Performance Architect

Andres Mejia
AI Software Development Engineer

Murali Madhanagopal
 Cloud and AI Architect

Suleyman Sair, PhD
Principal Engineer, Cloud Software

A Guide to Kafka Optimizations and Benchmarks 3

Overview. . 4

Intel Crypto for Kafka Encryption Acceleration. 4

Optimize Apache Kafka Streaming. . 5

Performance Benchmark Test. . 5

	 Workload Architecture. . 5

	 Process/Methodology . . 6

	 KPI. . 6

	 Software Stack . . 6

1.	 Intel Gen-to-Gen Kafka
	 Performance Comparison . . 7

	 1.1 Intel Gen-to-Gen AWS m6i (3rd Gen) vs.
	 m5 (2nd Gen) Encryption OFF. .7

	 1.2 Intel Gen-to-Gen AWS m6i (3rd Gen) vs.
	 m5 (2nd Gen) Encryption ON. . 7

	 1.3 Intel Gen-to-Gen AWS m6i (3rd Gen) vs.
	 m5 (2nd Gen) with Compression. . 8

2. Kafka Performance – CPU Scaling AWS i4i. 9

	 2.1 Intel AWS i4i Instances (LZ4 compression). 9

3.	 Kafka Encryption Performance Across
	 Java Versions . . 9

	 3.1 Kafka Throughput in Intel AWS m6i (3rd Gen)
	 vs. m5 (2nd Gen) Across JDK and Encryptions 10

	 3.2 Kafka Throughput and Latency on Intel AWS
	 i4i.4xlarge Across JDK. . 10

4.	 �Kafka Compression in Intel AWS Instances 11

	 4.1 Kafka Compression Performance
	 Comparison AWS m6i.4xlarge . . 11

	 4.2 Kafka Compression
	 Optimizations on Intel Libraries. . .12

5. Intel’s Contributions on Open
	 Source Optimization . . 13

	 OpenJDK – Upstream/Backport
	 Support for VAES Crypto. . 13

	 Kafka Community – TLS Regression. 13

	 OpenSSL – SSL & TLS with Several Cryptographic
	 Functions Including AES. . 13

	 Intel® Storage Acceleration Library (ISA-L). 13

	 Intel® Integrated Performance
	 Primitives (Intel® IPP)
	 Cryptography. . 13

Table of Contents

6. Intel’s Continued Innovation to Optimize
	 Apache Kafka. . 13

Appendix A – Configurations. .14

Table 1.1: Hardware Configuration
Used for this Testing. . . 14

Table 1.2: Hardware Configuration
Used for this Testing. . . 15

Table 1.3: Configurations of the Intel Bare Metal
3rd Gen Intel Xeon Scalable Processor. 16

Table 2.1: Software and Workload Used for
this Testing and Kafka Configuration Used
for this Testing. . 16

Table 2.2: Software and Workload Used for
this Testing and Kafka Configuration Used
for this Testing. . 17

Table 2.3: Software and Workload Used for
this Testing and Kafka Configuration Used
for this Testing. . 18

Table 2.4: Kafka Configuration Used for
this Testing . . 18

A Guide to Kafka Optimizations and Benchmarks 4

Overview
Apache Kafka is an open-source Distributed Event streaming platform used
for high-performance data pipelines, streaming analytics, data integration,
and mission-critical applications. It is a Publish-Subscribe real-time messaging
system to process data in a resilient, fault tolerant, horizontally scalable way.

Because Kafka is a high volume and low latency message broker, we need a
fast (but still secure) encryption algorithm capable of encrypting an arbitrary
amount of data. Kafka Producer must encrypt the messages before pushing
them over the network into Kafka Consumer, which then needs to decrypt them
upon retrieval. Kafka supports the encryptions using Transport Layer Security
(TLS). Enabling TLS causes performance impact due to encryption overhead.
Apache Kafka does not directly support any form of encryption-at-rest for data
stored at a broker.

This handbook will dive into several use cases to show Kafka workload
optimizations in 3rd Generation Intel Xeon Scalable CPUs to accelerate the
encryption process through hardware across different compression
methods against different JDK versions.

Intel® Crypto for Kafka Encryption Acceleration

Follower Broker

Intel CryptoIntel Crypto

Intel Crypto Intel CryptoLead Broker

ZooKeeperConsumer

Producer

reducing the CPU overhead due to encryptions. TLS
Cryptography protocols uses AES-GCM cipher suites
to optimize Kafka Broker Throughput performance and
reducing encryption overhead without impacting the
latency SLA.

Intel has also developed compression plug-in solution
as an extension of certain compression algorithm,
improving Throughput, latency, and compression ratios
for Kafka workload.

New 3rd Gen Intel Xeon Scalable processors,
introduce enhanced cryptographic operations called
Crypto accelerations contributing to improved
performance for Apache Kafka workloads where
encryption and decryption are enabled. The new
Crypto instructions set supports implementation of
stronger encryption protocols without compromising
performance by reducing compute cycles allocated
for cryptography processing.

As high volumes of data will be encrypted, symmetric key
encryption is the natural choice for efficiently ensuring
the confidentiality of stored Kafka topic messages. The
Advanced Encryption Standard (AES) is an efficient
symmetric encryption algorithm. Intel® AES instructions
are supported by 3rd Gen Intel Xeon Scalable processor
(Code name: Ice Lake) Vector Advanced Encryption
Standard (VAES) for faster processing of cryptographic
algorithms, constant time encryption, and resilience
to certain side-channel attacks. The new AES-NI
instruction set is comprised of six new instructions
that perform several compute intensive parts of the
AES algorithm. These instructions can execute using
significantly less clock cycles than a software solution.

Galois/Counter Mode (GCM) is an authenticated
encryption mode for block ciphers. AES-GCM is not
only efficient and secure, but hardware implementations
can achieve high speeds with low cost and low latency,
because the mode can be pipelined. Applications that
require high data Throughput can benefit from these
high-speed implementations. AES-GCM is optimized
with newest JDK software e.g., OpenJDK 11.0.11 and later
which leverages power of VAES and VPCLMULQDQ
instructions from Intel® AVX-512 instruction set family
to accelerate the Kafka streaming performance while

A Guide to Kafka Optimizations and Benchmarks 5

Optimize Apache Kafka Streaming
Optimizing the Kafka streaming performance is a key
challenge for any enterprise for better SLA, increased
TCO, better user experience, and satisfying the
compliance requirements.

Below are several ways to achieve better Kafka
performance on Intel® platforms:

•	 Switching to the latest generation Intel Xeon processor
to leverage Advanced Crypto accelerations

•	 Scaling to choose higher vCPU Intel-based instances

•	 Use optimized JDK versions to benefit from Crypto
upstream features

•	 Use best Compression methods based on use cases

•	 Use OpenSSL TLS or advanced JDK SSL features

•	 Use Intel Libraries for better Compressions based
on use cases

Performance Benchmark Test
For capacity planning tied to SLA requirement, it is
important to run the benchmark testing to achieve the
optimized throughput and best user experience as
different environments, workloads, and use-cases have
specific needs.

The below benchmark test cases were performed across
different Intel Xeon-SP generations CPUs, JDK versions,
compression methods, and encryption scenarios in AWS
cloud instances. For test cases executed on specific
AWS instances and related Hardware configurations,
Kafka software, and workload configurations refer to
Appendix A.

Workload Architecture

This workload is measuring Apache Kafka's streaming
performance by utilizing the built-in standard application
tool. Currently, the test case measures Apache Kafka
Producer and Consumer performance. Intel has used
the diagram below as Kafka benchmarking framework
for testing. The workload executed using standard
embedded scripts ‘kafka-producer-perf-test.sh’ and
‘kafka-consumer-perf-test.sh’ for performance harness.

Throughput
measured between

server and producers

Apache ZooKeeper and
Apache Kafka Server

Consumer 1 Consumer 2 Consumer NProducer 1 Producer 2 Producer N

Node 1

Node 2

K8s Cluster

Node 3

A Guide to Kafka Optimizations and Benchmarks 6

Process/Methodology

Benchmark process executed in Intel internal framework
with below mentioned steps:

•	 Perform Kafka Producer – publish millions of messages
per thread to Broker Kafka server

•	 Perform Kafka Consumer – read millions of subscribed
messages per thread

•	 The workload contains three docker images:

	– Producer (generate and send messages to Kafka
and ZooKeeper server)

	– Kafka-ZooKeeper-server (receive messages from
Producer and send messages to Consumer)

	– Consumer (get messages from Kafka and
ZooKeeper server)

•	 Three Kubernetes worker nodes used for this test
case to host Producer, Broker, and Consumer
containers in PODs.

•	 Each POD is assigned to each Kubernetes node using
Anti-affinity setup. Producer has 1 POD, Broker has 1
POD, and Consumer has 1 POD. Testing is done with
Replication factor 1 with 1 partition.

•	 Median value of three Runs taken for Max Throughput
and P99 Latency to avoid outliers.

•	 Measure the p99 Latency and aggregate transmitted
Throughput Producer to Broker.

KPI – Key Performance Indicators

This benchmark results focuses on two KPIs:

#1 – Max Throughput (in MB/second) which measures
the sum of Producer messages that arrive to Broker
within a specific amount of time.

 #2 – Producer P99 Latency—the time it takes for a
record produced to Kafka to be fetched by the Consumer.
P99 Latency is standard tail latency measures how much
end-to-end latency 99th percentile of time.

Software Stack

Any change in configurations have been called out in
individual optimizations area to override:

ConsumerProducer
Kafka Server

and ZooKeeper

1POD 1POD 1POD

SW

OS

HW

OpenJDK 8 (8u331-b09)/
11.0.15/17.0.1

Kafka 3.2/3.0/2.8.1 ZooKeeper 3.7.0 Python 3.10.1

3rd gen Intel® Xeon® Scalable processor (Ice Lake)

Ubuntu 20.04.4 LTS (Kernel 5.13.0-11019-aws), Ubuntu 22.04.1 LTS (Kernel 5.15.0-1019-aws)
CentOS Linux 7 (Core)

N 1 1 N

3 Node
K8s

Cluster

Encryption ON

Throughput
improvement with
3rd Gen Ice Lake
instances (m6i)

Latency
improvement vs.
older generation (m5)

33% 12%

Both Throughput and Latency KPI depends on choice
of hardware or cloud provider so it is important to
understand what hardware acceleration and software
can help to achieve your specific latency goals in your
unique environment.

In the below test Kafka performance comparison done
between 3rd Gen Intel Xeon Scalable processor instances
and 2nd Gen Intel Xeon Scalable processor instances in
Amazon AWS cloud m5, m6i, and i4i instances. It shows
the performance difference across storage, compute,
and memory optimized AWS instances. In the sections
below, any changes made to the baseline configurations
are called out.

1.1: Intel Gen-2-Gen AWS m6i (3rd gen) vs.
m5 (2nd gen) – Encryption OFF

The performance test is done on 2nd Gen Intel Xeon
Scalable processor m5.4xl (16 vCPU) vs. 3rd Gen Intel
Xeon Scalable processor-based m6i.4xl (16 vCPU) in
Open JDK 11.0.15 version while Kafka Encryption config
is turned off.

Performance Summary

3rd Gen Intel Xeon Scalable processor instances
(m6i) shows 30% Throughput improvement vs. older
generation (m5); for Throughput: higher is better and
for P99 Latency: lower is better. See Table 1.1 and 2.1
from the Appendix A for configuration details.

1.2: Intel Gen-2-Gen AWS m6i (3rd gen) vs.
m5 (2nd gen) – Encryption ON

The performance test is done on 2nd Gen Intel Xeon
Scalable processor m5.4xl (16 vCPU) vs. 3rd Gen Intel
Xeon Scalable processor-based m6i.4xl (16 vCPU) in
Open JDK 11.0.15 version while Kafka Encryption config
is turned on.

Performance Summary

3rd Gen Intel Xeon Scalable processor instances (m6i)
shows 33% Throughput improvement and 12% Latency
improvement vs. older generation (m5). Improvement
because of Intel VAES crypto instructions for 3rd gen;
for Throughput: higher is better and for P99 Latency:
lower is better. See Table 1.1 and 2.1 from the Appendix A
for configuration details.

1. Intel Gen-to-Gen Kafka Performance Comparison

0

1.0

1.2

1.4

0.8

0.6

0.4

0.2

Gen-to-Gen m6i vs. m5 – JDK11
Encryption Off

1 1 1.03

1.3

Max Throughput
(MB/s)

P99 Latency
(ms)

Higher is better

Lower is better

m5.4xlarge m6i.4xlarge

Figure 1: Intel® AWS m6i (3rd Gen) vs. m5 (2nd Gen) –
Encryption OFF.

0

1.0

1.2

1.4

0.8

0.6

0.4

0.2

Gen-to-Gen m6i vs. m5 – JDK11
Encryption On

1 1
0.88

1.33

Max Throughput
(MB/s)

P99 Latency
(ms)

Higher is better

Lower is better

m5.4xlarge m6i.4xlarge

Figure 2: Intel® AWS m6i (3rd Gen) vs. m5 (2nd Gen) –
Encryption ON.

A Guide to Kafka Optimizations and Benchmarks 7

A Guide to Kafka Optimizations and Benchmarks 8

1.3: Intel Gen-2-Gen AWS m6i (3rd Gen) vs.
 m5 (2nd Gen) with Compression

The performance test is done on 2nd Gen Intel Xeon
Scalable processor m5.4xl (16 vCPU) vs. 3rd Gen Intel
Xeon Scalable processor m6i.4xl (16 vCPU) in Open
JDK 11.0.15 version.

The following images will show the optimization
on Throughput and latency across two different
compression methods Zstd and LZ4.

Performance Summary

•	 AWS m6i.4xlarge instance shows 35% Throughput
improvement in Zstd and 30% Throughput
improvement in LZ4 against AWS m5.4xl instance.

•	 AWS m6i.4xlarge instance shows 12% Latency
improvement in Zstd and 36% Latency improvement
in LZ4 against AWS m5.4xl instance; for Throughput:
higher is better and for P99 Latency: lower is better.
See Table 1.1 and 2.1 from Appendix A for configuration
details.

0

1.0

1.5

0.5

Compression Method Zstd

1 1

0.84

1.35

Max Throughput
(MB/s)

P99 Latency
(ms)

Higher is better

Lower is better

0

1.0

1.5

0.5

Compression Method LZ4

1 1

0.64

1.30

Max Throughput
(MB/s)

P99 Latency
(ms)

Higher is better

Lower is better

m5.4xlarge m6i.4xlarge m5.4xlarge m6i.4xlarge

Figure 3: Intel® AWS m6i (3rd Gen) vs. m5 (2nd Gen) – Zstd / LZ4 compression.

Kafka performance comparison done across multiple 3rd
Gen Intel Xeon Scalable processor instances in Amazon
AWS cloud ‘i4i’ instances. In the test below, number of
Producers, number of Brokers, number of Consumers,
and total partitions also increased linearly (4x).

For e.g., the i4i.4xlarge instance with 16 vCPU having
32 Brokers, Consumers, Producers, partitions.

2.1: Intel® AWS i4i Instances (LZ4 compression)

The performance test is done on Intel Xeon Ice
Lake i4i.xlarge(4vCPU), i4i.2xlarge(8vCPU),
i4i.4xlarge(16vCPU) in Open JDK 11.0.15 version.

0

2.0

5.0

4.0

3.0

1.0

AWS i4i Instances CPU Scaling

1

3.86

1.91

Max Throughput (MB/s)

Higher is better

1

1.50

2.08

P99 Latency (ms)

Lower is better

i4i.xlarge i4i.2xlarge i4i.4xlarge

Figure 4: Intel® AWS i4i Instances scaling (LZ4 compression).

The following images will show the optimization on
Throughput and Latency for compression methods LZ4.

Performance Summary

•	 3rd Gen Intel Xeon Scalable processor AWS i4i
instance CPUs scaling shows linear % Max Throughput
improvement with LZ4 compression. Brokers,
Consumers, and partitions also scaled along with
instances. For Throughput: higher is better and for
P99 Latency: lower is better. See Table 1.2 and 2.2
from Appendix A for configuration details.

3. Kafka Encryption Performance Across Java Versions

Intel team has upstreamed several Crypto instructions
set supports in OpenJDK version 11.0.11+ via Open-
source Java community. This document will provide
the details on Kafka performance comparison across
different Java versions.

2. Kafka Performance – CPU Scaling AWS i4i

The transparent end-to-end encryption in Kafka done
via Java serializer and de-serializer implementation
utilizes Intel VAES Crypto instructions set. 3rd
Gen Intel Xeon Scalable processor instructions
supports the operations of Crypto algorithms for
simultaneous execution and a method allowing
parallel processing of multiple independent
databuffers giving the Crypto acceleration
boost of Kafka stream processing performance.

A Guide to Kafka Optimizations and Benchmarks 9

A Guide to Kafka Optimizations and Benchmarks 10

Figure 5: Intel® AWS m6i 3rd Gen vs. m5 2nd Gen – No compression.

Figure 6: Intel® AWS i4i.4xlarge Latency and Throughput for JDK 8 vs. JDK 11.

3.1 Kafka Throughput in Intel AWS m6i (3rd Gen) vs.
m5 (2nd Gen) Across JDK and Encryptions

Kafka performance comparison done across 3rd Gen
Intel Xeon Scalable processor in Amazon AWS cloud
'm6i.4xlarge' and 'm5.4xlarge' instances across JDK
8 vs. JDK 11 versions for different Encryption setting.
JDK 11 and higher version provides the Intel® Crypto
acceleration against no Crypto support for JDK 8 hence
attributed to significant performance improvements.

Performance Summary

3rd Gen Intel Xeon Scalable processors AWS instance
shows ~25-30% Throughput improvement against 2nd
Gen Intel Xeon Scalable processors; for Throughput:
higher is better and for P99 Latency: lower is better.
See Table 1.1 and Table 2.1 from the Appendix A for
configuration details.

0

0.4

1.4

1.2

1.0

0.8

0.6

0.2

JDK across Encryptions – m5 Baseline Throughput

1

1.24

JDK 8 – Encryption On

Higher is better

1

1.30

1

1.33

JDK 11 – Encryption Off JDK 11 – Encryption On

m5.4xlarge m6i.4xlarge

0

1.0

1.5

0.5

JDK11 – Encryption On

1 1

0.61

1.26

Throughput Latency

Higher is better
Lower is better

JDK 8 JDK 11

3.2 Kafka Throughput and Latency
on Intel AWS i4i.4xlarge Across JDK

Kafka performance comparison done across 3rd Gen
Intel Xeon Scalable processor in Amazon AWS cloud
'i4i.4xlarge' instances across JDK 8 vs. JDK 11 versions
for compression Zstd while Encryptions are turned on.
JDK 11 and higher provides the Intel Crypto acceleration
against no Crypto support for JDK 8 hence attributed to
significant performance improvements.

Performance Summary

3rd Gen Intel Xeon Scalable Processors AWS instance
i4i.4xlarge shows 26% Throughput and 39% Latency
improvement JDK 8 to JDK 11 with Encryption ON; for
Throughput: higher is better and for P99 Latency: lower
is better. See Table 1.2 and Table 2.2 from Appendix A for
configuration details.

A Guide to Kafka Optimizations and Benchmarks 11

Compression has a huge significance in Kafka workload
performance. By default, Kafka messages are not
compressed, compressing data batches improves
Throughput and reduces the load on physical storage
(with replication it would be even more) plus data
transmitted over the network will be reduced. Message
compression adds latency in the Producer (CPU time
spent compressing the messages) but it is not always
suitable for low-latency applications where the cost of
compression or decompression has zero tolerance.

From Producers to Broker Throughput with different
compression algorithms inhibits significant difference
vs. no compression.

In the below graph Throughput and latency impact in a
compressed and non-compressed data is outlined. How
compression varies across different algorithms and
performance impact is shown. Intel has also developed
a plugin solution on top of 'gzip' compression to improve
Latency for Max Throughput.

Figure 7: Intel® AWS m6i.4xlarge across compression types – Encryption OFF.

4.1 Kafka Compression Performance Comparison
AWS m6i.4xlarge

Performance on Kafka data across different compression
algorithms is shown in the below chart. All tests on
m6i.4xlarge have been done with 32 (double the vCPUs)
Producers/Brokers/Consumers and partitions.

Performance Summary

P99 Latency is better when 'gzip' compression is applied
comparing other compression methods. Excluding
'gzip' other compression methods are showing better
Throughput; for Throughput: higher is better and for
P99 Latency: lower is better. See Table 1.1 and 2.3 from
Appendix A for configuration details.

0

1.00

2.00

1.50

0.50

m6i.4xlarge – Compression Types

1

1.48 1.481.48

Throughput (MB/s)

Higher is better

1

1.38 1.38

1.08

P99 Latency

Lower is better

gzip snappy zstd lz4

4. Kafka Compression in Intel AWS Instances

A Guide to Kafka Optimizations and Benchmarks 12

4.2 Kafka Compression Optimizations
on Intel Libraries

Kafka compression process helps to achieve two things:
Reducing network bandwidth usage and saving disk
space on Kafka Brokers. However, the tradeoff would
be dispatch latency because of higher CPU utilization
due to compression. Gzip is known to have the highest
compression ratios with high CPU usage but slowest
compression speed (latency). In certain use cases gzip
is more desirable cost optimize solution against LZ4,
Zstd, or Snappy.

Intel® Ingenuity Partner Program (Intel® IPP)
multithreaded software library with Zlib interface
improve the default gzip latency. And Intel Intelligent
Storage acceleration library (ISA-L) optimizes the
storage Throughput with functions for RAID, erasure
code, cyclic redundancy check (CRC) functions,
cryptographic hash, encryption, and compression.
The below graph presents Intel solution over native
Java gzip to show performance boost.

Figure 8: 3rd Gen Intel® Xeon® Scalable processor with Intel Compression library.

Performance Summary

Intel® Storage Acceleration Library (Intel® ISA-L)
improves Throughput by 1.47x and Intel IPP improves
Throughput by 1.15x comparing Java native gzip Intel
ISA-L improves Latency by 34% and IPP improves
Latency by 8% comparing Java native gzip; for
Throughput: higher is better and for P99 Latency:
lower is better. See Table 1.3 and Table 2.4 from
Appendix A for configuration details.

0

1.5

1.0

0.5

Gzip vs. Intel Lib Comparison

1

1.47

1.15

Max Throughput (MB/s)

1

0.91

0.66

P99 Latency

Java gzip IPP gzip ISA-L

A Guide to Kafka Optimizations and Benchmarks 13

OpenJDK – Upstream/Backport Support
for VAES Crypto

Intel team has contributed to OpenJDK community so
that Java can leverage performance acceleration Crypto
features support from Intel AVX-512 VAES (Vectorized
Advanced Encryption Standard) instruction set in 3rd
Gen Intel Xeon Scalable processors.

Intel team also backported several Crypto/Hash
acceleration support features from future JDK
versions (JDK 12+) to JDK 11 LTS and JDK 11.0.15 which
differentiate the overall Java performance in JDK 11
to boost performance for numerous Java dependent
workloads including Kafka. This enhancement is
contributed by Intel and sponsored by the hotspot
compiler team.

Kafka Community – TLS Regression

Kafka supports TLS for both encryption and
authentication. TLS cryptographic protocol uses
AES-GCM which can be CPU intensive. If a server has
negotiated TLS 1.3 it must terminate the connection
with an “unexpected message” alert. TLS 1.3 On Kafka
2.7 doesn’t support renegotiation creating intermittent
disconnections in Brokers before read/write is completed
impacting p99 Latency.

While working with a customer, Intel engineers found
the issue for JDK 11 and TLS 1.3 and suggested a fix,
customer applied the fix to resolve the issue which has
been requested to upstream (https://issues.apache.org/
jira/browse/KAFKA-13418) to Kafka community.

OpenSSL – SSL & TLS with Several
Cryptographic Functions Including AES

The OpenSSL project provides an open-source
implementation of the SSL/TLS protocols and is
a commonly deployed library for SSL/TLS world-
wide which can be used in Kafka clients and Broker
communication. Confluent Kafka broadly adopted
OpenSSL for TLS. OpenSSL implementation can
have better performance comparing to JDK SSL.

Asynchronous OpenSSL is a non-blocking approach
that supports a parallel-processing model at the
cryptographic level for SSL/TLS protocols, which
in turn allows for other types of optimizations. This
capability allows cryptographic transformations to
be processed on dedicated hardware engines or on
separate logical cores. Intel® QuickAssist Technology
(Intel® QAT) Engine on Open SSL can boost the overall
TLS performance.

Intel QAT OpenSSL Engine (QAT_Engine) supports
acceleration for both hardware as well as optimized
software based on vectorized instructions.

Intel® Storage Acceleration Library (Intel® ISA-L)

Intel ISA-L provides tools to minimize disk space use and
maximize storage Throughput, security, and resilience.
Intel ISA-L is a collection of optimized low-level functions
targeting storage applications. Intel ISA-L helps improve
compression and Throughput performance and reduce
latency for a storage application with erasure coding
that uses Reed-Solomon error correction. Intel ISA-L
proves increase gzip compression performance (better
Throughput) using Intel implementation called IGZIP.
Intel ISA-L Crypto accelerates multi-buffer cryptography
hashes providing better Throughput leveraging vector
SIMD instructions set and improved AES ciphers. This
can optimize Kafka performance.

Intel® Integrated Performance Primitives
(Intel® IPP) Cryptography

Intel IPP Cryptography is a secure, fast, and lightweight
library of building blocks for cryptography, highly
optimized for various Intel CPUs that includes 3rd Gen
Intel Xeon Scalable processor. It optimizes hardware
cryptography instructions support using several Intel®
Streaming SIMD versions and various AVX Instructions
sets. Intel Integrated Performance Primitives which is
multi-threaded software library (part of Intel OneAPI
toolkit) which shows better Kafka performance using
IPP gzip which is the Intel patched version of native Java
gzip solution.

6. Intel’s Continued Innovation
to Optimize Apache Kafka
•	 Better Kafka performance using JDK 18 optimized

CRC32, interleaved GCM functions on Intel hardware.

•	 New 4th Gen Intel Xeon Scalable Processor QAT
accelerator engine improves Crypto acceleration
and data De/compression while offloading the CPU.

•	 JDK 18 improved Java array copy/clear to use 512-bit
wide vector width instruction for 4th Gen Intel Xeon
Scalable processor.

•	 Intel Granulate (https://granulate.io/solutions/intel/)
application and workload performance optimization
solution saves CPU utilization without any code
changes. It can reduce costs by up to 60% while
saving CPU up to 25-40%.

5. Intel’s Contributions on Open Source Optimization

Appendix A Configurations
The following tables show the full configuration details for the test environment, platforms, and software.
All performance results are based on these configurations and tests by Intel on April 12, 2022 - Sept. 21, 2022.

Table 1.1: Hardware Configuration Used for this Testing

 m6i.4xlarge m5.4xlarge

Manufacturer Amazon EC2 Amazon EC2

Product Name m6i.4xlarge m5.4xlarge

BIOS Version 1 1

Microcode 0xd000331 0x500320a

IRQ Balance Enabled Enabled

CPU Model Intel® Xeon® Platinum 8375C CPU
@ 2.90 GHz

Intel® Xeon® Platinum 8259CL CPU
@ 2.50 GHz

Base Frequency 2.9 GHz 2.5 GHz

Maximum Frequency 3.5 GHz 3.5 GHz

All-Core Maximum
Frequency

3.5 GHz 3.1 GHz

CPU(s) 16 16

Thread(s) per Core 2 2

Core(s) per Socket 8 8

Socket(s) 1 1

NUMA Node(s) 1 1

Prefetchers DCU HW, DCU IP,
L2 HW, L2 Adj.

DCU HW, DCU IP,
L2 HW, L2 Adj.

Turbo Enabled Enabled

Frequency 2,899 MHz 2.5 GHz

Max C-State 9 9

Installed Memory 64 GB (1x64 GB DDR4 3,200 MT/s
[Unknown])

64 GB (1x64 GB DDR4 2,933 MT/s
[Unknown])

Huge Pages Size 2,048 kB 2,048 kB

Transparent Huge Pages madvise madvise

Automatic NUMA Balancing Disabled Disabled

NIC Summary 1x Elastic Network Adapter (ENA) 1x Elastic Network Adapter (ENA)

Drive Summary 1x 500G Amazon Elastic Block Store 1x 500G Amazon Elastic Block Store

A Guide to Kafka Optimizations and Benchmarks 14

Table 1.2: Hardware Configuration Used for this Testing

 i4i.xlarge i4i.2xlarge i4i.4xlarge

Manufacturer Amazon EC2 Amazon EC2 Amazon EC2

Product Name i4i.xlarge i4i.2xlarge i4i.4xlarge

BIOS Version 1 1 1

Microcode 0xd000331 0xd000331 0xd000331

IRQ Balance Enabled Enabled Enabled

CPU Model Intel® Xeon® Platinum
8375C CPU @ 2.90 GHz

Intel® Xeon® Platinum
8375C CPU @ 2.90 GHz

Intel® Xeon® Platinum
8375C CPU @ 2.90 GHz

Base Frequency 2.9 GHz 2.9 GHz 2.9 GHz

Maximum Frequency 3.5 GHz 3.5 GHz 3.5 GHz

All-Core Maximum
Frequency

3.5 GHz 3.5 GHz 3.5 GHz

CPU(s) 4 8 16

Thread(s) per Core 2 2 2

Core(s) per Socket 2 4 8

Socket(s) 1 1 1

NUMA Node(s) 1 1 1

Prefetchers DCU HW, DCU IP,
L2 HW, L2 Adj.

DCU HW, DCU IP,
L2 HW, L2 Adj.

DCU HW, DCU IP,
L2 HW, L2 Adj.

Turbo Enabled Enabled Enabled

Frequency 2.9 GHz 2.9 GHz 2.9 GHz

Max C-State 9 9 9

Installed Memory 32 GB (1x64 GB DDR4
3,200 MT/s [Unknown])

64 GB (641x64 GB DDR4
3,200 MT/s [Unknown])

128 GB (1x64 GB DDR4
3,200 MT/s [Unknown])

Huge Pages Size 2,048 kB 2,048 kB 2,048 kB

Transparent Huge Pages madvise madvise madvise

Automatic NUMA Balancing Disabled Disabled Disabled

NIC Summary 1x Elastic Network Adapter
(ENA)

1x Elastic Network Adapter
(ENA)

1x Elastic Network Adapter
(ENA)

Drive Summary 1x 500 G Amazon Elastic
Block Store

1x 500 G Amazon Elastic
Block Store

1x 500 G Amazon Elastic
Block Store, 1x 3.4T
Amazon EC2 NVMe
Instance Storage

A Guide to Kafka Optimizations and Benchmarks 15

Table 1.3: Configurations of the Intel Bare metal 3rd Gen Intel® Xeon® Scalable Processor

HW / SW Configuration for IA Testing (ISA-L and IPP)

OS CentOS Linux 7 (Core)

Kernel 5.13.0+

CPU model ICELAKE – Intel® Xeon® Gold 6348 CPU @ 2.60 GHz

Sockets, Total CPU(s), NUM Count 2, 112, 2

HT, Turbo Boost YES, YES

Memory 1,024 GB (32x32 GB DDR4 3,200 MT/s [3,200 MT/s])

Disk Nvme0n1: 3.7T

Network loopback

BIOS Version 05.01.01

Microcode 0xd0002a0

FWVersion 02.01.00.1127

Kafka 3.0.0

Java JDK 11.0.15

ISA-L 2.30

IPP 2021.4.0

Table 2.1: Software and Workload Used for this Testing

Attribute m6i.4xlarge m5.4xlarge

OS_VER 20.04.4 22.04.1

OS_IMAGE Ubuntu 22.04.1 LTS Ubuntu 22.04.1 LTS

OPENJDK_VER jdk-11.0.15 jdk-11.0.15

OPENJDK_PACKAGE openJDK11U-jdk_x86_linux_
hotspot_11.0.15_10.tar.gz

openJDK11U-jdk_x86_linux_
hotspot_11.0.15_10.tar.gz

PYTHON_VER Python-3.10.2 Python-3.10.2

PYTHON_PACKAGE Python-3.10.2.tgz Python-3.10.2.tgz

ZooKeeper 3.7.0 3.7.0

ZOOKEEPER_PACKAGE apache-zookeeper-3.7.0-bin.tar.gz apache-zookeeper-3.7.0-bin.tar.gz

KAFKA 3.2 3.2

KAFKA_PACKAGE kafka_2.12-3.2.0.tgz kafka_2.12-3.2.0.tgz

Kafka Configuration Used for this Testing

REPLICATION_FACTOR 1

PARTITIONS *Twice # of vCPUs

OF PRODUCERS *Twice # of vCPUs

OF CONSUMERS *Twice # of vCPUs

NUM_RECORDS 5,000,000

ENCRYPTION TRUE

RECORD_SIZE 1,000

COMPRESSION_TYPE Zstd/LZ4

MESSAGES 10,000,000

CONSUMER_TIMEOUT 600,000

BATCH_SIZE 524,288

LINGER_MS 100

A Guide to Kafka Optimizations and Benchmarks 16

https://www.python.org/ftp/python/3.10.2/Python-3.10.2.tgz
https://www.python.org/ftp/python/3.10.2/Python-3.10.2.tgz
http://archive.apache.org/dist/zookeeper/zookeeper-3.7.0/apache-zookeeper-3.7.0-bin.tar.gz
http://archive.apache.org/dist/zookeeper/zookeeper-3.7.0/apache-zookeeper-3.7.0-bin.tar.gz

Table 2.2: Software and Workload Used for this Testing

Attribute i4i.xlarge, i4i.2xlarge, i4i.4xlarge

OS_VER 22.04.1

OS_IMAGE Ubuntu 22.04.1 LTS

OPENJDK_VER jdk-11.0.15

OPENJDK_PACKAGE openJDK11U-jdk_x86_linux_hotspot_11.0.15_10.tar.gz

PYTHON_VER Python-3.10.2

PYTHON_PACKAGE Python-3.10.2.tgz

ZooKeeper 3.7.0

ZOOKEEPER_PACKAGE apache-zookeeper-3.7.0-bin.tar.gz

KAFKA 3.2

KAFKA_PACKAGE kafka_2.12-3.2.0.tgz

A Guide to Kafka Optimizations and Benchmarks 17

Kafka Configuration Used for this Testing

REPLICATION_FACTOR 1

PARTITIONS *Twice # of vCPUs

OF PRODUCERS *Twice # of vCPUs

OF CONSUMERS *Twice # of vCPUs

NUM_RECORDS 5,000,000

ENCRYPTION TRUE

RECORD_SIZE 1,000

COMPRESSION_TYPE Zstd/LZ4

MESSAGES 10,000,000

CONSUMER_TIMEOUT 600,000

BATCH_SIZE 524,288

LINGER_MS 100

https://www.python.org/ftp/python/3.10.2/Python-3.10.2.tgz
http://archive.apache.org/dist/zookeeper/zookeeper-3.7.0/apache-zookeeper-3.7.0-bin.tar.gz

Table 2.3: Software and Workload Used for this Testing

Attribute m6i.4xlarge

OS_VER 20.04.4

OS_IMAGE Ubuntu 20.04.4 LTS

OPENJDK_VER jdk-17.0.1

OPENJDK_PACKAGE openjdk-17.0.1_linux-x64_bin.tar.gz

PYTHON_VER Python-3.10.2

PYTHON_PACKAGE Python-3.10.2.tgz

ZooKeeper 3.7.0

ZOOKEEPER_PACKAGE apache-zookeeper-3.7.0-bin.tar.gz

KAFKA 2.8.1*

KAFKA_PACKAGE kafka_2.12-2.8.1.tgz

2.4: Kafka Configuration Used for this Testing

REPLICATION_FACTOR 1

PARTITIONS 1

OF PRODUCERS 112

OF CONSUMERS 1

OF BROKERS 1

NUM_RECORDS 5,000,000

MESSAGES 10000000.0

ENCRYPTION No

RECORD_SIZE 2048

COMPRESSION_TYPE Gzip/IPP Gzip

BATCH_SIZE 524288.0

LINGER_MS 100 ms

Kafka Configuration Used for this Testing

REPLICATION_FACTOR 1

PARTITIONS *Twice # of vCPUs

OF PRODUCERS *Twice # of vCPUs

OF CONSUMERS *Twice # of vCPUs

NUM_RECORDS 3,000,000

ENCRYPTION OFF

RECORD_SIZE 1,000

COMPRESSION_TYPE gzip/Zstd/Snappy/LZ4

MESSAGES 2,000,000

CONSUMER_TIMEOUT 600,000

BATCH_SIZE Default

LINGER_MS Default

Performance varies by use, configuration and other factors. Learn more at www.intel.com/PerformanceIndex.
Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates.
See configuration disclosure for additional details.
No product or component can be absolutely secure.
Your costs and results may vary.
Intel technologies may require enabled hardware, software or service activation.
© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries.
Other names and brands may be claimed as the property of others.
0922/KF/HBD/PDF	  Please Recycle	 353150-001

https://www.python.org/ftp/python/3.10.2/Python-3.10.2.tgz
http://archive.apache.org/dist/zookeeper/zookeeper-3.7.0/apache-zookeeper-3.7.0-bin.tar.gz

