
Intel Labs’ new Loihi 2 research chip outperforms its predecessor by up to 10x and 
comes with an open-source, community-driven neuromorphic computing framework

Taking Neuromorphic Computing 
to the Next Level with Loihi 2

Introduction
Recent breakthroughs in AI have swelled our appetite for intelligence in computing 
devices at all scales and form factors. This new intelligence ranges from recommendation 
systems, automated call centers, and gaming systems in the data center to autonomous 
vehicles and robots to more intuitive and predictive interfacing with our personal 
computing devices to smart city and road infrastructure that immediately responds to 
emergencies. Meanwhile, as today’s AI technology matures, a clear view of its limitations 
is emerging. While deep neural networks (DNNs) demonstrate a near limitless capacity 
to scale to solve large problems, these gains come at a very high price in computational 
power and pre-collected data. Many emerging AI applications—especially those that 
must operate in unpredictable real-world environments with power, latency, and data 
constraints—require fundamentally new approaches.

Neuromorphic computing represents a fundamental rethinking of computer architecture 
at the transistor level, inspired by the form and function of the brain’s biological neural 
networks. Despite many decades of progress in computing, biological neural circuits 
remain unrivaled in their ability to intelligently process, respond to, and learn from 
real-world data at microwatt power levels and millisecond response times.

Guided by the principles of biological neural computation, neuromorphic 
computing intentionally departs from the familiar algorithms and programming 
abstractions of conventional computing so it can unlock orders of magnitude gains 
in efficiency and performance compared to conventional architectures. The goal is 
to discover a computer architecture that is inherently suited for the full breadth of 
intelligent information processing that living brains effortlessly support.
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Three Years of Loihi Research
Intel Labs is pioneering research that drives the evolution 
of compute and algorithms toward next-generation AI. 
In 2018, Intel Labs launched the Intel Neuromorphic 
Research Community (Intel NRC) and released the Loihi 
research processor for external use. The Loihi chip 
represented a milestone in the neuromorphic research 
field. It incorporated self-learning capabilities, novel neuron 
models, asynchronous spike-based communication, and 
many other properties inspired from neuroscience modeling, 
with leading silicon integration scale and circuit speeds.

Over the past three years, Intel NRC members 
have evaluated Loihi in a wide range of application 
demonstrations. Some examples include: 
• Adaptive robot arm control 
• Visual-tactile sensory perception 
• Learning and recognizing new odors and gestures 
• Drone motor control with state-of-the-art latency 

in response to visual input 
• Fast database similarity search
• Modeling diffusion processes for scientific 

computing applications 
• Solving hard optimization problems such as 

railway scheduling 

In most of these demonstrations, Loihi consumes far less 
than 1 watt of power, compared to the tens to hundreds of 
watts that standard CPU and GPU solutions consume. With 
relative gains often reaching several orders of magnitude, 
these Loihi demonstrations represent breakthroughs in 
energy efficiency.1

Furthermore, for the best applications, Loihi simultaneously 
demonstrates state-of-the-art response times to arriving 
data samples, while also adapting and learning from 
incoming data streams. This combination of low power and 
low latency, with continuous adaptation, has the potential 
to bring new intelligent functionality to power- and latency-
constrained systems at a scale and versatility beyond what 
any other programmable architecture supports today. 

Loihi has also exposed limitations and weaknesses found in 
today’s neuromorphic computing approaches. While Loihi 
has one of the most flexible feature sets of any neuromorphic 
chip, many of the more promising applications stretch the 
range of its capabilities, such as its supported neuron models 
and learning rules. Interfacing with conventional sensors, 
processors, and data formats proved to be a challenge and 
often a bottleneck for performance. While Loihi applications 
show good scalability in large-scale systems such as the 
768-chip Pohoiki Springs system, with gains often increasing 
relative to conventional solutions at larger scales, congestion 
in inter-chip links limited application performance.

Loihi’s integrated compute-and-memory architecture 
foregoes off-chip DRAM memory, so scaling up workloads 
requires increasing the number of Loihi chips in an 
application. This means the economic viability of the 
technology depends on achieving significant improvements 

in the resource density of neuromorphic chips to minimize 
the number of required chips in commercial deployments.

One of the biggest challenges holding back the 
commercialization of neuromorphic technology is the lack 
of software maturity and convergence. Since neuromorphic 
architecture is fundamentally incompatible with standard 
programming models, including today’s machine-learning 
and AI frameworks in wide use, neuromorphic software and 
application development is often fragmented across research 
teams, with different groups taking different approaches 
and often reinventing common functionality. Yet to emerge 
is a single, common software framework for neuromorphic 
computing that supports the full range of approaches 
pursued by the research community that presents compelling 
and productive abstractions to application developers.

The Nx SDK software developed by Intel Labs for 
programming Loihi focused on low-level programming 
abstractions and did not attempt to address the larger 
community’s need for a more comprehensive and open 
neuromorphic software framework that runs on a wide range 
of platforms and allows contributions from throughout the 
community. This changes with the release of Lava. 

Loihi 2: A New Generation of Neuromorphic 
Computing Architecture
Building on the insights gained from the research performed 
on the Loihi chip, Intel Labs introduces Loihi 2. A complete tour 
of the new features, optimizations, and innovations of this chip 
is provided in the final section. Here are some highlights:

• Generalized event-based messaging. Loihi originally 
supported only binary-valued spike messages. Loihi 2 
permits spikes to carry integer-valued payloads with 
little extra cost in either performance or energy. These 
generalized spike messages support event-based 
messaging, preserving the desirable sparse and time-coded 
communication properties of spiking neural networks 
(SNNs), while also providing greater numerical precision.

• Greater neuron model programmability. Loihi was 
specialized for a specific SNN model. Loihi 2 now 
implements its neuron models with a programmable 
pipeline in each neuromorphic core to support common 
arithmetic, comparison, and program control flow 
instructions. Loihi 2’s programmability greatly expands 
its range of neuron models without compromising 
performance or efficiency compared to Loihi, thereby 
enabling a richer space of use cases and applications.

Intel Labs is pioneering research that 
drives the evolution of compute and 
algorithms toward next-generation AI. 
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• Enhanced learning capabilities. Loihi primarily 
supported two-factor learning rules on its synapses, 
with a third modulatory term available from non-
localized “reward” broadcasts. Loihi 2 allows networks 
to map localized “third factors” to specific synapses. 
This provides support for many of the latest neuro-
inspired learning algorithms under study, including 
approximations of the error backpropagation 
algorithm, the workhorse of deep learning. While 
Loihi was able to prototype some of these algorithms 
in proof-of-concept demonstrations, Loihi 2 will be 
able to scale these examples up, for example, so new 
gestures can be learned faster with a greater range of 
presented hand motions.

• Numerous capacity optimizations to improve resource 
density. Loihi 2 has been fabricated with a preproduction 
version of the Intel 4 process to address the need 
to achieve greater application scales within a single 
neuromorphic chip. Loihi 2 also incorporates numerous 
architectural optimizations to compress and maximize 
the efficiency of each chip’s neural memory resources. 
Together, these innovations improve the overall resource 
density of Intel’s neuromorphic silicon architecture 
from 2x to over 160x, depending on properties of the 
programmed networks. 

• Faster circuit speeds. Loihi 2’s asynchronous circuits 
have been fully redesigned and optimized, improving 
on Loihi down to the lowest levels of pipeline 
sequencing. This has provided gains in processing 
speeds from 2x for simple neuron state updates to 5x 
for synaptic operations to 10x for spike generation.2 
Loihi 2 supports minimum chip-wide time steps under 
200ns; it can now process neuromorphic networks up 
to 5000x faster than biological neurons.

• Interface improvements. Loihi 2 offers more standard 
chip interfaces than Loihi. These interfaces are both 
faster and higher-radix. Loihi 2 chips support 4x faster 
asynchronous chip-to-chip signaling bandwidths,3 a 
destination spike broadcast feature that reduces inter-
chip bandwidth utilization by 10x or more in common 
networks,4 and three-dimensional mesh network 
topologies with six scalability ports per chip. Loihi 2 
supports glueless integration with a wider range of both 
standard chips, over its new Ethernet interface, as well as 
emerging event-based vision (and other) sensor devices.

Using these enhancements, Loihi 2 now supports a new 
deep neural network (DNN) implementation known as the 
Sigma-Delta Neural Network (SDNN) that provides great 
gains in speed and efficiency compared to the rate-coded 
spiking neural network approach commonly used on Loihi. 
SDNNs compute graded activation values in the same way 
that conventional DNNs do, but they only communicate 
significant changes as they happen in a sparse, event-
driven manner. Simulation characterizations show that 
SDNNs on Loihi 2 can improve on Loihi’s rate-coded SNNs 
for DNN inference workloads by over 10x in both inference 
speeds and energy efficiency.5 

Available Loihi 2 Hardware
Intel currently offers two Loihi 2-based neuromorphic 
systems to researchers. Primary access to Loihi 2 is through 
the Neuromorphic Research Cloud, where teams engaged in 
the Intel NRC have access to shared systems. 

Oheo Gulch:  
Single-chip system for early evaluation
Designed primarily for lab testing, each Oheo Gulch board 
contains a single-socketed Loihi 2 chip instrumented 
for characterization and debug. An Intel® Arria® 10 FPGA 
interfaces to Loihi 2 and provides remote access over 
Ethernet. These are the first systems made available to Intel 
NRC partners through Intel’s Neuromorphic Research Cloud, 
while larger-scale systems remain in development.

Kapoho Point:  
Compact, stackable 8-chip system (coming soon)
Kapoho Point improves upon Loihi’s Kapoho Bay, offering 
eight Loihi 2 chips in an approximately 4x4-inch form factor 
with an Ethernet interface. This system is ideal for portable 
projects and exposes general-purpose input/output (GPIO) 
pins and standard synchronous and asynchronous interfaces 
for integration with sensors and actuators for embedded edge 
and robotics applications. Kapoho Point boards can be stacked 
to create larger systems in multiples of eight chips. Kapoho 
Point will be available for remote access in the Neuromorphic 
Research Cloud and on loan to Intel NRC research teams.

Lava: A Community-Driven, Open-Source 
Neuromorphic Computing Framework6

One of the more fundamental challenges facing the field 
of neuromorphic computing has been the lack of clear, 
productive programming models for the hardware. Loihi 2 
comes with Lava—a new, open-source software framework 
for developing neuro-inspired applications and mapping 
them to neuromorphic platforms. The Lava architecture is 
platform-agnostic; we have intentionally structured the code 
so that it is not tied to our own neuromorphic chips. 
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It’s also modular and composable, so people can integrate 
the best algorithmic ideas from different groups and 
contribute back to a common code base. Lava is extensible 
and hierarchical, so people can build up levels of abstraction 
to make neuromorphic programming accessible to a broader 
developer community. Our overriding goal with Lava is to 
encourage convergence in the field with a common, open, 
professionally developed software foundation.

Lava includes Magma, a low-level interface for mapping 
and executing neural network models and sequential 
processes to neuromorphic hardware. This layer now 
includes cross-platform execution support, so applications 
can be developed in simulation on CPUs/GPUs before being 
deployed to Loihi 2 (or other) neuromorphic platforms. This 
layer also includes a profiler that can measure or estimate 
performance and energy consumption across the targeted 
back-end platforms.

Lava also supports channel-based asynchronous message 
passing. Lava specifies, compiles, and executes a collection 
of processes mapped to a heterogenous execution platform 
including both conventional and neuromorphic components. 
Communication between all processes occurs over an 
event-based message-passing backbone and API available 
to all processes. This presents developers with an overall 
programming paradigm of communicating sequential 
processes or the actor model, which supports extreme levels 
of parallelism. Messages in Lava vary in granularity from 
single-bit spikes to buffered packets with arbitrary payloads.

Other aspects of Lava include:

• Offline training. Lava supports tools such as SLAYER, 
enabling a range of different event-driven neural networks 
to be trained offline with backpropagation and integrated 
with other modules specified in Lava.

• Integration with third-party frameworks. Lava is fully 
extensible, supporting eventual interfaces to frameworks 
like Robotic Operating System (ROS), YARP, TensorFlow, 
PyTorch, Nengo, and more. These interfaces enable people 
to construct applications spanning heterogeneous systems 
and real-world applications.

• Python interfaces. For ease of adoption, all libraries 
and features in Lava are exposed through Python, with 
optimized libraries and underlying C/C++/CUDA/OpenCL 
code where necessary to provide excellent performance.

• Open-source framework with permissive licensing. Lava 
is freely available on GitHub to encourage community 
growth and convergence, and runs on CPU/GPU platforms 
without requiring any legal agreement with Intel. The 
software is available for free use under BSD-3 and LGPL-
2.1 licensing. The lowest-level components necessary for 
deploying applications to Loihi 2 hardware systems remain 
accessible only to engaged Intel NRC members, at no cost.

Collaborating to Advance 
Neuromorphic Computing
The Intel Neuromorphic Research Community (Intel 
NRC) is a collaborative research effort that brings 
together teams from academic, government, and 
industry organizations around the world to overcome 
the wide-ranging challenges facing the field of 
neuromorphic computing. Members of the NRC receive 
access to Intel’s Loihi research chips in support of 
their neuromorphic projects. Intel offers several forms 
of support to engaged members, including Loihi 2 
hardware, academic grants, early access to results, and 
invitations to community workshops. Membership is 
free and open to all qualified groups.

Intel created the NRC because we believe no single 
organization can effectively unlock the full potential of 
neuromorphic computing. By collaborating with some of 
the leading researchers in this field spanning academia, 
industry and government, Intel is working to overcome 
the challenges in the development of neuromorphic 
computing and to progress it from research prototypes 
to industry-leading products over the coming years. 
The group has grown rapidly since its inception in 
2018 and now includes more than 140 members. 
The community’s body of research and results paint 
a picture of neuromorphic computing being well-
suited for an emerging class of bio-inspired intelligent 
workloads that also have commercial relevance.

“In just a few years, we’ve formed a vibrant community 
comprising hundreds of researchers around the world 
inspired by the promise of neuromorphic computing 
to deliver orders of magnitude gains in computing 
efficiency, speed, and intelligent functionality. For the 
first time, we are seeing a quantitative picture emerge 
that validates this promise. Together, with our research 
partners, we plan to build on these insights to enable 
wide-ranging disruptive commercial applications for 
this nascent technology.”

– Mike Davies,  
Director of Intel’s Neuromorphic Computing Lab

As the NRC grows, Intel will continue investing in 
this unique ecosystem and working with members 
to provide technology support and explore where 
neuromorphic computing can add real-world value for 
problems, big and small. Additionally, Intel continues 
to apply learnings from the NRC to future generations 
of Loihi chips.

https://www.intel.com/content/www/us/en/research/neuromorphic-community.html
https://www.intel.com/content/www/us/en/research/neuromorphic-community.html
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A First Tour of Loihi 2
Loihi 2 has the same base architecture as its predecessor 
Loihi, but comes with several improvements to extend its 
functionality, improve its flexibility, increase its capacity, 
accelerate its performance, and make it easier to both scale 
and integrate into a larger system (see Figure 1).

Base Architecture
Building on the strengths of its predecessor, each Loihi 2 
chip consists of microprocessor cores and up to 128 fully 
asynchronous neuron cores connected by a network-on-chip 
(NoC). The neuron cores are optimized for neuromorphic 
workloads, each implementing a group of spiking neurons, 
including all synapses connecting to the neurons. All 
communication between neuron cores is in the form of 
spike messages. The number of embedded microprocessor 
cores has doubled from three in Loihi to six in Loihi 2. 
Microprocessor cores are optimized for spike-based 
communication and execute standard C code to assist with 
data I/O as well as network configuration, management, and 
monitoring. Parallel I/O interfaces extend the on-chip mesh 
across multiple chips—up to 16,384—with direct pin-to-pin 
wiring between neighbors. 

New Functionality
Loihi 2 supports fully programmable neuron models with 
graded spikes. Each neuron model takes the form of a 
program, which is a short sequence of microcode instructions 
describing the behavior of a single neuron. The microcode 
instruction set supports bitwise and basic math operations 
in addition to conditional branching, memory access, and 
specialized instructions for spike generation and probing. 
Table 1 summarizes the different types of instructions.

Table 1. Highlights of the Loihi 2 Instruction Set

OP CODES DESCRIPTION

RMW, RDC 
read-modify-write, read-and-clear

Access neural state variables in 
the neuron’s local memory space

MOV, SEL 
move, move if ‘c’ flag

Copy neuron variables and 
parameters between registers and 
the neuron’s local memory space

AND, OR, SHL 
and, or, shift left

Bitwise operations

ADD, NEG, MIN 
add, negate, minimum

Basic arithmetic operations

MUL_SHR 
multiply shift right

Fixed precision multiplication

LT, GE, EQ 
less than, not equal, equals

Compare and write result to 
‘c’ flag 

SKP_C, JMP_C 
skip ops, jump to program address 
based on ‘c’ flag

Branching to navigate program

SPIKE, PROBE 
spike, send probe data

Generate spike or send probe 
data to processor

Neurons can optionally generate and transmit graded 
spikes—a generalization of Loihi’s binary spike messages—
that carry a 32-bit spike payload, specified by microcode. 
A graded spike’s integer-valued payload multiplies the 
weights of downstream synapses. Typically, only eight bits 
of precision are used, representing a negligible extra energy 
cost compared to binary spike processing.

Support for three-factor learning rules. Loihi 2 
programmable neuron models may now manipulate synaptic 
input received from its dendritic compartments with arbitrary 
microcode and assign the results to third factor modulatory 
terms available to a neuron’s synaptic learning rules. This 
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Figure 1. Loihi 2 chip architecture.
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greatly generalizes the support Loihi offered for a reward-
based broadcast mechanism that was intended for the same 
purpose of modulating learning rules. Loihi 2’s modulatory 
factors may be mapped uniquely per post-synaptic neuron, 
such as to represent errors that apply to individual neurons 
in support of supervised learning algorithms.

Capacity Improvements
Loihi 2 achieves a 2x higher synaptic density than 
Loihi. Compared to Loihi, the Loihi 2 neuron cores are 
approximately half the size for a similar synaptic memory 
capacity. Although each Loihi 2 core has slightly less 
aggregate memory, the effective core capacity is significantly 
higher because the memory architecture in Loihi 2 is more 
efficient.

Loihi 2 cores support flexible memory partitioning to 
increase the effective core capacity. Where Loihi used many 
discrete individual memories, each with a fixed allocation, 
Loihi 2 asynchronously aggregates its memories to allow 
different functions in the core to access a variable number of 
memory banks (see Figure 2). This allows the overall memory 
resources to be soft-partitioned in order to achieve the 
optimal balance for a particular application— for instance, 
between neurons and synapses—on a per-core basis. This 
results in a higher effective core capacity. For example, the 
most common configuration of a Leaky-Integrate-and-Fire 
neuron model requires 4x fewer memory resources in Loihi 2 
compared to Loihi. In this case, Loihi 2 can implement 4x the 
neurons in the same memory footprint. Even greater neuron 
density can be achieved by reducing neuron precision or by 
reclaiming memory from other features.

Loihi 2 offers advanced connectivity compression features 
to better utilize available memory. Loihi 2 still supports the 
various sparse and dense synapse encodings supported by 
Loihi, but longer synapse lists and more flexibility in synaptic 
precision results in more efficient synapse encoding. Bigger 
improvements come from Loihi 2’s support for convolutional, 
factorized, and stochastic connections. Loihi 2’s convolution 
feature supports strided, dilated, and sparse kernels. The 
kernel is only stored once on the core, with synaptic targets 
computed on-the-fly. The factorized connectivity feature 
can compress synaptic memory from O(n2) to O(n) when the 
connectivity matrix can be expressed as the product of two 
vectors. Finally, the stochastic connectivity feature supports 
the procedural generation of synapses from a single seed. 
These powerful new features can increase effective synaptic 
capacities by many factors; for example, 17x for some 
convolutional networks to over 80x for stochastic connections.

Loihi 2 increases the number of embedded processors per 
chip to 6 from 3 in Loihi. These processors are programmed 
with conventional C or Python code and perform many 
essential tasks related to encoding and decoding data 
across the neuromorphic domain, as well as management 
and housekeeping operations. The increased processor 
count helps to prevent these conventional processing tasks 
from bottlenecking overall application performance, as 
occasionally occurred in Loihi. 

Factorized

Stochastic
Up to 80x

compression 

Convolution
Store kernel instead
of connection matrix

Axon Routing
Up to 256x compression vs. Loihi 

Neuron State 
Typical 4x compression vs. Loihi 

Synapses

Neuron Core

Neurons

Output spikes

On-chip broadcast of 
spikes from remote chips

O(n2) to O(n)
compression

Figure 2. Loihi 2’s memory partitioning is more flexible and 
efficient than Loihi’s.

I/O and Scalability
Loihi 2 supports local broadcast of spikes at a destination 
chip to alleviate congestion on chip-to-chip channels. 
Inter-chip links are fewer in number and inherently slower 
than on-chip links, thus introducing a potential bottleneck 
through which all inter-chip traffic must flow. Loihi 2’s new 
local broadcast feature significantly reduces inter-chip 
traffic, which can result in increases of over 10x in effective 
bandwidth for multi-chip workloads while freeing up routing 
table resources in the sending core. 

Loihi 2 supports 3D multi-chip scaling, resulting in shorter 
routing distances between chips and further reducing the 
congestion of inter-chip links. A variety of asynchronous 
inter-chip protocols optimized for different distances and 
pin-counts is available to allow flexibility in building systems 
of chips with different densities and physical configurations.

Loihi 2 supports standard interfaces for easier system 
integration with non-Loihi devices. Supported interfaces 
include 1000BASE-KX, 2500BASE-KX and 10GBase-
KR Ethernet, GPIO, and both synchronous (SPI) and 
asynchronous (AER) handshaking protocols. A spike I/O 
module at the edge of the chip provides configurable 
hardware accelerated expansion and encoding of input data 
into spike messages, reducing the bandwidth required from 
the external interface and improving performance while 
reducing load on the embedded processors.
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Loihi 2 at a Glance
Table 2 provides a comprehensive comparison of Loihi 2 features versus Loihi features.

Table 2. Comparison of Loihi to Loihi 2

Resources/Features Loihi Loihi 2  
Process  Intel 14nm Intel 4
Die Area  60 mm2 31 mm2

Core Area 0.41 mm2 0.21 mm2

Transistors 2.1 billion 2.3 billion
Max # Neuron Cores/Chip 128 128
Max # Processors/Chip 3 6
Max # Neurons/Chip 128,000 1 million
Max # Synapses/Chip 128 million 120 million
Memory/Neuron Core 208 KB, fixed allocation 192 KB, flexible allocation
Neuron Models Generalized LIF Fully programmable
Neuron State Allocation Fixed at 24 bytes per neuron Variable from 0 to 4096 per neuron depending on 

neuron model requirements
Connectivity Features Basic compression features: 

• Variety of sparse and dense synaptic compression 
formats

• Weight sharing of source neuron fanout lists

In addition to the Loihi 1 features: 
• Shared synapses for convolution
• Synapses generated from seed
• Presynaptic weight-scaling factors
• Core fan-out list compression and sharing
• Broadcast of spikes at destination chip 

Information Coding Binary spike events Graded spike events (up to 32-bit payload)
Neuron State Monitoring 
(for development/debug)

Requires remote pause and query of neuron memory Neurons can transmit their state on-the-fly 

Learning Architecture Programmable rules applied to pre-, post-, and reward 
traces

Programmable rules applied to pre-, post-, and 
generalized “third-factor” traces

Spike Input Handled by embedded processors Hardware acceleration for spike encoding and 
synchronization of Loihi with external data stream

Spike Output 1,000 hardware-accelerated spike receivers per 
embedded processor

In addition to the Loihi 1 feature, hardware accelerated 
spike output per chip for reporting graded payload, 
timing, and source neuron

External Loihi Interfaces Proprietary asynchronous interface Support for standard synchronous (SPI) and 
asynchronous (AER) protocols, GPIO, and 1000BASE-KX, 
2500BASE-KX, and 10GBase-KR Ethernet

Multi-Chip Scaling 2D tile-able chip array
Single inter-chip asynchronous protocol with fixed 
pin-count

3D tile-able chip array
Range of inter-chip asynchronous protocols with 
variable pipelining and pin-counts optimized for 
different system configurations

Timestep Synchronization Handled by cores Accelerated by NoC routers

Help accelerate research and adoption of breakthrough AI systems.  
For more information, visit intel.com/content/www/us/en/research/neuromorphic-community.html 
or email inrc_interest@intel.com.

1 A survey of these results was recently published in M. Davies et al, “Advancing Neuromorphic Computing with Loihi: A Survey of Results and Outlook,” Proc IEEE, 2021. Results may vary.
2 Based on comparisons between barrier synchronization time, synaptic update time, neuron update time, and neuron spike times between Loihi 1 and 2. Loihi 1 parameters measured 

from silicon characterization; Loihi 2 parameters measured from both silicon characterization with the N3B1 revision and pre-silicon circuit simulations. The Lava performance model for 
both chips is based on silicon characterization in September 2021 using the Nx SDK release 1.0.0 with an Intel Xeon E5-2699 v3 CPU (2.30 GHz, 32 GB RAM) as the host running Ubuntu 
version 20.04.2. Loihi results use Nahuku-32 system ncl-ghrd-04. Loihi 2 results use Oheo Gulch system ncl-og-04. Results may vary. 

3 Circuit simulations of Loihi 2’s wave pipelined signaling circuits show 800 Mtransfers/s compared to Loihi 1’s measured performance of 185 Mtransfers/s.
4 Based on analysis of 3-chip and 7-chip Locally Competitive Algorithm examples. 
5 Based on Lava simulations in September, 2021 of a nine-layer variant of the PilotNet DNN inference workload implemented as a sigma-delta neural network on Loihi 2 compared to the 

same network implemented with SNN rate-coding on Loihi. The Loihi 2 SDNN implementation gives better accuracy than the Loihi 1 rate-coded implementation.
6 Lava replaces the first-generation Loihi chip’s Nx SDK.

 Performance varies by use, configuration and other factors. Learn more at intel.com/PerformanceIndex. Performance results are based on testing as 
of dates shown in configurations and may not reflect all publicly available updates. See backup for configuration details. No product or component 
can be absolutely secure. Your costs and results may vary. Intel technologies may require enabled hardware, software or service activation. © Intel 
Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands may be 
claimed as the property of others. Your costs and results may vary. Intel technologies may require enabled hardware, software, or service activation. 
Intel and the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands may be claimed as the 
property of others. © Intel Corporation 0921/SBAI/KC/PDF

https://www.intel.com/content/www/us/en/research/neuromorphic-community.html
mailto:inrc_interest@intel.com
http://intel.com/PerformanceIndex

