
 Draft for Review

Intel® Platform Innovation Framework
for EFI

Hot-Plug PCI Initialization Protocol
Specification

Draft for Review

Version 0.9
August 9, 2004

Hot-Plug PCI Initialization Protocol Specification Draft for Review

ii August 2004 Version 0.9

THIS SPECIFICATION IS PROVIDED "AS IS" WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY
OF MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY
OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR SAMPLE. Except for a limited copyright license
to copy this specification for internal use only, no license, express or implied, by estoppel or otherwise, to any intellectual
property rights is granted herein.

Intel disclaims all liability, including liability for infringement of any proprietary rights, relating to implementation of information
in this specification. Intel does not warrant or represent that such implementation(s) will not infringe such rights.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined."
Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising
from future changes to them.

This document is an intermediate draft for comment only and is subject to change without notice. Readers should not design
products based on this document.

Intel, the Intel logo, and Itanium are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United
States and other countries.

* Other names and brands may be claimed as the property of others.

Copyright © 2000–2004, Intel Corporation.

Intel order number xxxxxx-001

 Draft for Review

Version 0.9 August 2004 iii

Revision History
Revision Revision History Date

0.9 First public release. 8/9/04

Hot-Plug PCI Initialization Protocol Specification Draft for Review

iv August 2004 Version 0.9

 Draft for Review

Version 0.9 August 2004 v

Contents

1 Introduction .. 7
Overview ... 7
Conventions Used in This Document.. 7

Data Structure Descriptions ... 7
Protocol Descriptions ... 8
Procedure Descriptions.. 8
Pseudo-Code Conventions .. 9
Typographic Conventions... 9

2 Design Discussion ... 11
Hot-Plug PCI Initialization Protocol Introduction ... 11
Hot-Plug PCI Initialization Protocol Terms .. 11
Hot-Plug PCI Initialization Protocol Related Information... 15
Requirements.. 15
Sample Implementation for a Platform Containing PCI Hot Plug* Slots 16

3 Code Definitions... 19
Introduction ... 19
Hot-Plug PCI Initialization Protocol ... 19

EFI_PCI_HOT_PLUG_INIT_PROTOCOL ... 19
EFI_PCI_HOT_PLUG_INIT_PROTOCOL.GetRootHpcList()....................................... 21
EFI_PCI_HOT_PLUG_INIT_PROTOCOL.InitializeRootHpc() 23
EFI_PCI_HOT_PLUG_INIT_PROTOCOL.GetResourcePadding().............................. 27

Hot-Plug PCI Initialization Protocol Specification Draft for Review

vi August 2004 Version 0.9

 Draft for Review

Version 0.9 August 2004 7

1
Introduction

Overview
This specification defines the core code and services that are required for an implementation of the
Hot-Plug PCI Initialization Protocol of the Intel® Platform Innovation Framework for EFI
(hereafter referred to as the "Framework"). A PCI bus driver, running in the EFI Boot Services
environment, uses this protocol to initialize the hot-plug subsystem. The same protocol may be used
by other buses such as CardBus that support hot plugging. This specification does the following:
• Describes the basic components of the hot-plug PCI subsystem and the Hot-Plug PCI

Initialization Protocol
• Provides code definitions for the Hot-Plug PCI Initialization Protocol and the hot-plug-PCI–

related type definitions that are architecturally required by the Intel® Platform Innovation
Framework for EFI Architecture Specification

Conventions Used in This Document
This document uses the typographic and illustrative conventions described below.

Data Structure Descriptions
Intel® processors based on 32-bit Intel® architecture (IA-32) are “little endian” machines. This
distinction means that the low-order byte of a multibyte data item in memory is at the lowest
address, while the high-order byte is at the highest address. Processors of the Intel® Itanium®
processor family may be configured for both “little endian” and “big endian” operation. All
implementations designed to conform to this specification will use “little endian” operation.
In some memory layout descriptions, certain fields are marked reserved. Software must initialize
such fields to zero and ignore them when read. On an update operation, software must preserve
any reserved field.
The data structures described in this document generally have the following format:

STRUCTURE NAME: The formal name of the data structure.

Summary: A brief description of the data structure.

Prototype: A “C-style” type declaration for the data structure.

Parameters: A brief description of each field in the data structure prototype.

Description: A description of the functionality provided by the data structure,
including any limitations and caveats of which the caller should
be aware.

Related Definitions: The type declarations and constants that are used only by
this data structure.

Hot-Plug PCI Initialization Protocol Specification Draft for Review

8 August 2004 Version 0.9

Protocol Descriptions
The protocols described in this document generally have the following format:

Protocol Name: The formal name of the protocol interface.

Summary: A brief description of the protocol interface.

GUID: The 128-bit Globally Unique Identifier (GUID) for the protocol
interface.

Protocol Interface Structure:
A “C-style” data structure definition containing the procedures
and data fields produced by this protocol interface.

Parameters: A brief description of each field in the protocol interface
structure.

Description: A description of the functionality provided by the interface,
including any limitations and caveats of which the caller should
be aware.

Related Definitions: The type declarations and constants that are used in the protocol
interface structure or any of its procedures.

Procedure Descriptions
The procedures described in this document generally have the following format:

ProcedureName(): The formal name of the procedure.

Summary: A brief description of the procedure.

Prototype: A “C-style” procedure header defining the calling sequence.

Parameters: A brief description of each field in the procedure prototype.

Description: A description of the functionality provided by the interface,
including any limitations and caveats of which the caller should
be aware.

Related Definitions: The type declarations and constants that are used only by
this procedure.

Status Codes Returned: A description of any codes returned by the interface. The
procedure is required to implement any status codes listed in this
table. Additional error codes may be returned, but they will not
be tested by standard compliance tests, and any software that
uses the procedure cannot depend on any of the extended error
codes that an implementation may provide.

 Draft for Review Introduction

Version 0.9 August 2004 9

Pseudo-Code Conventions
Pseudo code is presented to describe algorithms in a more concise form. None of the algorithms in
this document are intended to be compiled directly. The code is presented at a level corresponding
to the surrounding text.
In describing variables, a list is an unordered collection of homogeneous objects. A queue is an
ordered list of homogeneous objects. Unless otherwise noted, the ordering is assumed to be First In
First Out (FIFO).
Pseudo code is presented in a C-like format, using C conventions where appropriate. The coding
style, particularly the indentation style, is used for readability and does not necessarily comply with
an implementation of the Extensible Firmware Interface Specification.

Typographic Conventions
This document uses the typographic and illustrative conventions described below:
Plain text The normal text typeface is used for the vast majority of the descriptive

text in a specification.
Plain text (blue) In the online help version of this specification, any plain text that is

underlined and in blue indicates an active link to the cross-reference.
Click on the word to follow the hyperlink. Note that these links are not
active in the PDF of the specification.

Bold In text, a Bold typeface identifies a processor register name. In other
instances, a Bold typeface can be used as a running head within a
paragraph.

Italic In text, an Italic typeface can be used as emphasis to introduce a new
term or to indicate a manual or specification name.

BOLD Monospace Computer code, example code segments, and all prototype code
segments use a BOLD Monospace typeface with a dark red color.
These code listings normally appear in one or more separate paragraphs,
though words or segments can also be embedded in a normal text
paragraph.

Bold Monospace In the online help version of this specification, words in a
Bold Monospace typeface that is underlined and in blue indicate an
active hyperlink to the code definition for that function or type definition.
 Click on the word to follow the hyperlink. Note that these links are not
active in the PDF of the specification. Also, these inactive links in the
PDF may instead have a Bold Monospace appearance that is
underlined but in dark red. Again, these links are not active in the PDF of
the specification.

Italic Monospace In code or in text, words in Italic Monospace indicate placeholder
names for variable information that must be supplied (i.e., arguments).

Plain Monospace In code, words in a Plain Monospace typeface that is a dark red
color but is not bold or italicized indicate pseudo code or example code.
These code segments typically occur in one or more separate paragraphs.

Hot-Plug PCI Initialization Protocol Specification Draft for Review

10 August 2004 Version 0.9

text text text In the PDF of this specification, text that is highlighted in yellow
indicates that a change was made to that text since the previous revision
of the PDF. The highlighting indicates only that a change was made
since the previous version; it does not specify what changed. If text was
deleted and thus cannot be highlighted, a note in red and highlighted in
yellow (that looks like (Note: text text text.)) appears where the deletion
occurred.

See the master Framework glossary in the Framework Interoperability and Component
Specifications help system for definitions of terms and abbreviations that are used in this document
or that might be useful in understanding the descriptions presented in this document.
See the master Framework references in the Interoperability and Component Specifications help
system for a complete list of the additional documents and specifications that are required or
suggested for interpreting the information presented in this document.
The Framework Interoperability and Component Specifications help system is available at the
following URL:
http://www.intel.com/technology/framework/spec.htm

http://www.intel.com/technology/framework/spec.htm

 Draft for Review

Version 0.9 August 2004 11

2
Design Discussion

Hot-Plug PCI Initialization Protocol Introduction
This chapter describes the Hot-Plug PCI Initialization Protocol. A PCI bus driver, running in the
EFI Boot Services environment, uses this protocol to initialize the hot-plug subsystem. This
protocol is generic enough to include PCI-to-CardBus bridges and PCI Express* systems. This
protocol abstracts the hot-plug controller initialization and resource padding. This protocol is
required on platforms that support PCI Hot Plug* or PCI Express slots. For the purposes of
initialization, a CardBus PC Card bus is treated in the same way. This protocol is not required on all
other platforms.
This protocol is not intended to support hot plugging of PCI cards during the preboot stage.
Separate components can be developed if such support is desired.
See Hot-Plug PCI Initialization Protocol in Code Definitions for the definition of
EFI_PCI_HOT_PLUG_INIT_PROTOCOL.

Hot-Plug PCI Initialization Protocol Terms
The following terms are used throughout this document.

16-bit PC Card
Legacy cards that follow the PC Card Standard and operate in 16-bit mode.

CardBay PC Card
32-bit PC Cards that follow the high-performance serial PC Card Standard. After
initialization, these devices appear as standard PCI devices.

CardBus bridge
A hardware controller that produces a CardBus bus. A CardBus bus can accept a CardBus PC
Card as well as legacy 16-bit PC Cards. CardBus PC Cards appear just like PCI devices to the
configuration software.

CardBus PC Card
32-bit PC Cards that follow the PC Card Standard.

HPB
Hot Plug Bus.

HPC
Hot Plug Controller. A generic term that refers to both a PHPC and a CardBus bridge.

HPRT
Hot Plug Resource Table.

Hot-Plug PCI Initialization Protocol Specification Draft for Review

12 August 2004 Version 0.9

JEITA
Japan Electronics and Information Technology Association.

legacy PHPC
PCI devices that can be identified by their class code but were defined prior to the PCI
Standard Hot-Plug Controller and Subsystem Specification, revision 1.0. These devices have
a base class of 0x6, subclass of 0x4, and programming interface of 0.

PC Card
Integrated circuit cards that follow the PC Card Standard. "PC Card" is a generic term that is
used to refer to 16-bit PC Cards, 32-bit CardBus PC Cards, and high-performance CardBay
PC Cards.

PC Card Standard
Refers to the set of specifications that are produced jointly by the PCMCIA and JEITA. This
standard was defined to promote interchangeability among mobile computers.

PCI bus
A generic term used to describe any PCI-like buses, including conventional PCI, PCI-X*, and
PCI Express*. From a software standpoint, a PCI bus is collection of up to 32 physical PCI
devices that share the same physical PCI bus.

PCI bus driver
A bus driver that initializes the PCI bus. As defined in the EFI 1.10 Specification, the PCI bus
driver creates a handle for every PCI controller in the system and installs both the PCI I/O
Protocol and the Device Path Protocol onto that handle. It may optionally perform PCI
enumeration if resources have not already been allocated to all the PCI controllers. It also
loads and starts any EFI drivers that are found in any PCI option ROMs that were discovered
during PCI enumeration as requested.

PCI configuration space
The configuration channel defined by PCI to configure PCI devices into the resource domain
of the system. Each PCI device must produce a standard set of registers in the form of a PCI
configuration header and can optionally produce device-specific registers.

PCI controller
A hardware component that is discovered by a PCI bus driver and is managed by a PCI
device driver. The terms "PCI function" and "PCI controller" are used equivalently in this
document.

PCI device
A collection of up to 8 PCI functions that share the same PCI configuration space. A PCI
device is physically connected to a PCI bus.

 Draft for Review Design Discussion

Version 0.9 August 2004 13

PCI enumeration
The process of assigning resources to all the PCI controllers on a given PCI host bridge. This
process includes the following:

• Assigning PCI bus numbers and PCI interrupts
• Allocating PCI I/O resources, PCI memory resources, and PCI prefetchable memory

resources
• Setting miscellaneous PCI DMA values
• Typically, PCI enumeration is to be performed only once during the boot process.

PCI function
A controller that provides some type of I/O services. It consumes some combination of PCI
I/O, PCI memory, and PCI prefetchable memory regions and the PCI configuration space.
The PCI function is the basic unit of configuration for PCI.

PCI host bridge
The software abstraction that produces one or more PCI root bridges. All the PCI buses that
are produced by a host bus controller are part of the same coherency domain. A PCI host
bridge is an abstraction and may be made up of multiple hardware devices. Most systems can
be modeled as having one PCI host bridge. This software abstraction is necessary while
dealing with PCI resource allocation because resources that are assigned to one PCI root
bridge depend on one another and all the "related" PCI root bridges must be considered
together during resource allocation.

PCI root bridge
A PCI root bridge produces a root PCI bus. It bridges a root PCI bus and a bus that is not a
PCI bus (for example, a processor local bus or InfiniBand* fabric). A PCI host bridge may
have one or more root PCI bridges. Configurations of a root PCI bridge within a host bridge
can have dependencies upon other root PCI bridges within the same host bridge.

PCI segment
A collection of up to 256 PCI buses that share the same PCI configuration space. A PCI
segment is defined in section 6.5.6 of the ACPI 2.0 Specification as the _SEG object; see
Industry Specifications in the master Framework help system for the URL for the ACPI
specification. The SAL_PCI_CONFIG_READ and SAL_PCI_CONFIG_WRITE procedures
that are defined in chapter 9 of the Intel® Itanium® Processor Family System Abstraction
Layer Specification define how to access the PCI configuration space in a system that
supports multiple PCI segments; see Related Information from Intel in the master Framework
help system for the URL for this specification. If a system supports only a single PCI
segment, the PCI segment number is defined to be zero. The existence of PCI segments
enables the construction of systems with greater than 256 PCI buses.

PCI-to-CardBus bridges
A PCI device that produces a CardBus bus. The PCI-to-CardBus bridge has a type 2 PCI
configuration header and has a class code of 0x070600.

Hot-Plug PCI Initialization Protocol Specification Draft for Review

14 August 2004 Version 0.9

PHPC
PCI Hot Plug* Controller. A hardware component that controls the power to one or more
conventional PCI slots or PCI Express slots.

resource padding
Also known as resource overallocation. System resources are said to be overallocated if more
resources are allocated to a PCI bus than are required. Resource padding allows a limited
number of add-in cards to be hot added to a PCI bus without disturbing allocation to the rest
of the buses.

root HPC
Root Hot Plug Controller. An HPC that gets reset only when the entire system is reset. Such
HPCs can depend upon the system firmware to initialize them because system firmware is
guaranteed to run after a system reset. An HPC that is embedded in the PCI root bridge is
considered a root HPC bridge. Some platform chipsets include special-purpose PCI-to-PCI
bridges. They appear like a PCI-to-PCI bridge to the configuration software, but their primary
bus interface is not a PCI bus. Such a component can be considered a root HPC if it is not
subordinate to an HPC. Legacy HPCs may be implemented as chipset devices that appear to
be behind a special-purpose PCI-to-PCI bridge, but these HPCs are not reset when the
secondary bus reset bit in the parent PCI-to-PCI bridge is set. Such HPCs are considered as
root HPCs as well.

An HPC that is a child of a PCI-to-PCI bridge is not a root HPC. Such an HPC can be reset if
the secondary bus reset bit in the PCI-to-PCI bridge is set by an operating system. Because
the initialization code in the system firmware may not be executed during this case, such an
HPC must initialize itself using hardware mechanisms, without any firmware intervention.
An HPC that is a child of another HPC is not a root HPC. See section 3.5.1.3 in the PCI
Standard Hot-Plug Controller and Subsystem Specification, revision 1.0, for details regarding
this term.

root PCI Bus
A PCI bus that is not a child of another PCI bus. For every root PCI bus, there is an object in
the ACPI name space with a Plug and Play ID of "PNP0A03." Typical desktop systems
include only one root PCI bus.

SHPC
Standard (PCI) Hot Plug Controller. A PCI Hot Plug controller that conforms to the PCI
Standard Hot-Plug Controller and Subsystem Specification, revision 1.0. This specification is
published by the PCI Special Interest Group (PCI-SIG). An SHPC can either be embedded in
a PCI root bridge or a PCI-to-PCI bridge.

 Draft for Review Design Discussion

Version 0.9 August 2004 15

Hot-Plug PCI Initialization Protocol Related Information
The following resources are referenced throughout this specification or may be useful to you:
• Conventional PCI Specification, revision 3.0: http://www.pcisig.com/*
• PC Card Standard, volumes 1, 7, and 8: http://www.pcmcia.org/*
• PCI Express Base Specification, revision 1.0a: http://www.pcisig.com/*
• PCI Hot-Plug Specification, revision 1.1: http://www.pcisig.com/*
• PCI Standard Hot-Plug Controller and Subsystem Specification, revision 1.0:

http://www.pcisig.com/*

Requirements
Framework-based firmware must support platforms with PCI Hot Plug* slots and PCI Express*
Hot Plug slots, as well as CardBus PC Card sockets. In both cases, the user is allowed to plug in
new devices or remove existing devices during runtime. PCI Hot Plug slots are controlled by a PCI
Hot Plug controller whereas CardBus sockets are controlled by a PCI-to-CardBus bridge. PCI
Express Hot Plug slots are controlled by a PCI Express root port or a downstream port in a switch.
The term "Hot Plug Controller" (HPC) in this document refers to all of these types of controllers.
From the standpoint of initialization, all three are identical and have the same general requirements,
as follows:
• The root HPCs may come up uninitialized after system reset. These HPCs must be initialized

by the system firmware.
• Every HPC may require resource padding. The padding must be taken into account during PCI

enumeration. This scenario is true for conventional PCI, PCI Express, and CardBus PC Cards
because they all consume shared system resources (I/O, memory, and bus). These resources are
produced by the root PCI bridge.

These general requirements place the following specific requirements on an implementation of the
Framework:
• Framework-based firmware must handle root HPCs differently than other regular PCI devices.

When a root HPC is initialized, the hot-plug slots or CardBus sockets are enabled and this
process may uncover more PCI buses and devices. In that respect, root HPCs are somewhat like
PCI bridges. The root HPC initialization process may involve detecting bus type and optimum
bus speed. The initialization process may also detect faults and voltage mismatches. The
initialization process may be specific to the controller and the platform. At the time of the root
HPC initialization, the PCI bus may not be fully initialized and the standard PCI bus-specific
protocols are not available. Framework-based firmware must provide an alternate infrastructure
for the initialization code. In other words, the HPC initialization code should not be required to
understand the bus numbering scheme and other chipset details.

• Framework-based firmware must support an unlimited number of HPCs in the system.
Framework-based firmware must support various types of HPCs as long as they follow industry
standards or conventions. A mix of various types of HPCs is allowed.

• Framework-based firmware must support legacy PCI Hot Plug Controllers (PHPCs; class code
0x6, subclass code 0x4) as well as Standard (PCI) Hot Plug Controllers (SHPCs). Other
conventional PCI Hot Plug controllers are not supported.

Hot-Plug PCI Initialization Protocol Specification Draft for Review

16 August 2004 Version 0.9

• Framework-based firmware must be capable of supporting a PHPC that is a child of another
PHPC. In that case, the PCI Standard Hot-Plug Controller and Subsystem Specification
requires that the child PHPC must be initialized without firmware assistance because it is not a
root PHPC.

• Framework-based firmware must be capable of supporting SHPCs on an add-in card. In that
case, the PCI Standard Hot-Plug Controller and Subsystem Specification requires that such an
SHPC must be initialized without firmware assistance because it is not a root PHPC.
Framework-based firmware must also support plug-in CardBus bridges that follow the CardBus
Specification, which is part of the PC Card Standard.

• As stated above, root HPCs may require firmware initialization. Framework-based firmware
must be capable of supporting root HPCs that are initialized by hardware and do not require
any firmware initialization.

• A Framework-based PCI bus enumerator must overallocate resources for PCI Hot Plug buses
and CardBus sockets. The amount of overallocation may be platform specific.

• The root HPC initialization process may be time consuming. An SHPC can take as long as 15
seconds to enable power to a hot-plug bus without violating the PCI Special Interest Group
(PCI-SIG*) requirements. Framework-based firmware should be able to initialize multiple
HPCs in parallel to reduce boot time. In contrast, CardBus initialization is quick.

• Framework-based firmware should be able to handle when an HPC fails. Framework-based
firmware should be able to handle an HPC that has been disabled.

• The PCI bus driver in Framework-based firmware is not required to assume anything that is not
in one of the PCI-SIG specifications.

• The Framework should work in a PCI Express system. The PCI Express Base Specification
defines a register interface that is different and simpler than the SHPC register interface. Hot-
plug capability is built into 3GIO* switches, each of which appears as PCI-to-PCI bridges in
the configuration space. 3GIO systems naturally contain HPCs behind HPCs.

• It must be possible to produce legacy Hot Plug Resource Tables (HPRTs) if necessary. HPRTs
are described in the PCI Standard Hot-Plug Controller and Subsystem Specification.

Sample Implementation for a Platform Containing PCI Hot Plug* Slots
Typically, the PCI bus driver will enumerate and allocate resources to all devices for a PCI host
bridge. A sample algorithm for PCI bus enumeration is described below to clarify some of the finer
points of the EFI_PCI_HOT_PLUG_INIT_PROTOCOL. Actual implementations may vary
although the relative ordering of events is critical. The activities related to PCI Hot Plug* are
underlined. Please note that multiple passes of bus enumeration are required in a system containing
PCI Hot Plug slots.
See the Intel® Platform Innovation Framework for EFI PCI Host Bridge Resource Allocation
Protocol Specification for definitions of the
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL and its member functions.
1. If the platform supports PCI Hot Plug, an instance of the

EFI_PCI_HOT_PLUG_INIT_PROTOCOL is installed.
2. The PCI enumeration process begins.
3. Look for instances of the EFI_PCI_HOT_PLUG_INIT_PROTOCOL. If it is not found, all the

hot-plug subsystem initialization steps can be skipped. If one exists, create a list of root Hot

 Draft for Review Design Discussion

Version 0.9 August 2004 17

Plug Controllers (HPCs) by calling
EFI_PCI_HOT_PLUG_INIT_PROTOCOL.GetRootHpcList().

4. Notify the host bridge driver that bus enumeration is about to begin by calling
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL.NotifyPhase
(EfiPciHostBridgeBeginBusAllocation).

5. For every PCI root bridge handle, do the following:
a. Call

EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL.StartBusEnum
eration (This,RootBridgeHandle).

b. Make sure each PCI root bridge handle supports the
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL. See the EFI 1.10 Specification for the
definition of the PCI Root Bridge I/O Protocol.

c. Allocate memory to hold resource requirements. These can be two resource descriptors,
one to hold bus requirements and another to hold the I/O and memory requirements.

d. Call
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL.GetAllocAttr
ibutes() to get the attributes of this PCI root bridge. This information is used to
combine different types of memory resources in the next step.
1. Scan all the devices in the specified bus range and the specified segment, one bus at a

time. If the device is a PCI-to-PCI bridge, update the bus numbers and program the bus
number registers in the PCI-to-PCI bridge hardware. If the device path of a device
matches that of a root HPC and it is not a PCI-to-CardBus bridge, it must be initialized
by calling EFI_PCI_HOT_PLUG_INIT_PROTOCOL.InitializeRootHpc()
before the bus it controls can be fully enumerated. The PCI bus enumerator determines
the PCI address of the PCI Hot Plug Controller (PHPC) and passes it as an input to
InitializeRootHpc().

e. Continue to scan devices on that root bridge and start the initialization of all root HPCs.
f. Call

EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL.SetBusNumber
s() so that the HPCs under initialization are still accessible. SetBusNumbers() cannot
affect the PCI addresses of the HPCs.

6. Wait until all the HPCs that were found on various root bridges in step 5 to complete
initialization.

7. Go back to step 5 for another pass and rescan the PCI buses. For all the root HPCs and the
nonroot HPCs, call
EFI_PCI_HOT_PLUG_INIT_PROTOCOL.GetResourcePadding() to obtain the
amount of overallocation and add that amount to the requests from the physical devices.
Reprogram the bus numbers by taking into account the bus resource padding information. This
action will require calling
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL.SetBusNumbers()
. The rescan is not required if there is only one root bridge in the system.

....
Once the memory resources are allocated and a PCI-to-CardBus bridge is part of the HpcList, it
will be initialized.

Hot-Plug PCI Initialization Protocol Specification Draft for Review

18 August 2004 Version 0.9

 Draft for Review

Version 0.9 August 2004 19

3
Code Definitions

Introduction
This section contains the basic definitions that are related to PCI Hot Plug*. The following protocol
is defined in this section:
• EFI_PCI_HOT_PLUG_INIT_PROTOCOL
This section also contains the definitions for additional data types and structures that are
subordinate to the structures in which they are called. The following types or structures can be
found in "Related Definitions" of the parent function definition:
• EFI_HPC_LOCATION
• EFI_HPC_STATE
• EFI_HPC_PADDING_ATTRIBUTES

Hot-Plug PCI Initialization Protocol

EFI_PCI_HOT_PLUG_INIT_PROTOCOL

Summary
This protocol provides the necessary functionality to initialize the Hot Plug Controllers (HPCs) and
the buses that they control. This protocol also provides information regarding resource padding.

 NOTE
This protocol is required only on platforms that support one or more PCI Hot Plug* slots or
CardBus sockets.

GUID
#define EFI_PCI_HOT_PLUG_INIT_PROTOCOL_GUID \
 { 0xaa0e8bc1, 0xdabc, 0x46b0, 0xa8, 0x44, 0x37, 0xb8, 0x16,
0x9b, 0x2b, 0xea }

Protocol Interface Structure
typedef struct _EFI_PCI_HOT_PLUG_INIT_PROTOCOL {
 EFI_GET_ROOT_HPC_LIST GetRootHpcList;
 EFI_INITIALIZE_ROOT_HPC InitializeRootHpc;
 EFI_GET_HOT_PLUG_PADDING GetResourcePadding;
} EFI_PCI_HOT_PLUG_INIT_PROTOCOL;

Hot-Plug PCI Initialization Protocol Specification Draft for Review

20 August 2004 Version 0.9

Parameters
GetRootHpcList

Returns a list of root HPCs and the buses that they control. See the
GetRootHpcList() function description.

InitializeRootHpc

Initializes the specified root HPC. See the InitializeRootHpc() function
description.

GetResourcePadding

Returns the resource padding that is required by the HPC. See the
GetResourcePadding() function description.

Description
The EFI_PCI_HOT_PLUG_INIT_PROTOCOL provides a mechanism for the PCI bus
enumerator to properly initialize the HPCs and CardBus sockets that require initialization. The HPC
initialization takes place before the PCI enumeration process is complete. There cannot be more
than one instance of this protocol in a system. This protocol is installed on its own separate handle.
Because the system may include multiple HPCs, one instance of this protocol should represent all
of them. The protocol functions use the device path of the HPC to identify the HPC. When the PCI
bus enumerator finds a root HPC, it will call
EFI_PCI_HOT_PLUG_INIT_PROTOCOL.InitializeRootHpc(). If
InitializeRootHpc() is unable to initialize a root HPC, the PCI enumerator will ignore that
root HPC and continue the enumeration process. If the HPC is not initialized, the devices that it
controls may not be initialized, and no resource padding will be provided.
From the standpoint of the PCI bus enumerator, HPCs are divided into the following two classes:
• Root HPC: See Hot-Plug PCI Initialization Protocol Terms for the definition. These HPCs

must be initialized by calling InitializeRootHpc() during the enumeration process.
These HPCs will also require resource padding. The platform code must have a priori
knowledge of these devices and must know how to initialize them. There may not be any way
to access their PCI configuration space before the PCI enumerator programs all the upstream
bridges and thus enables the path to these devices. The PCI bus enumerator is responsible for
determining the PCI bus address of the HPC before it calls InitializeRootHpc().

• Nonroot HPC: See Hot-Plug PCI Initialization Protocol Terms for the definition. These HPCs
will not need explicit initialization during enumeration process. These HPCs will require
resource padding. The platform code does not have to have a priori knowledge of these
devices.

 Draft for Review Code Definitions

Version 0.9 August 2004 21

EFI_PCI_HOT_PLUG_INIT_PROTOCOL.GetRootHpcList()

Summary
Returns a list of root Hot Plug Controllers (HPCs) that require initialization during the boot process.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_GET_ROOT_HPC_LIST) (
 IN EFI_PCI_HOT_PLUG_INIT_PROTOCOL *This,
 OUT UINTN *HpcCount,
 OUT EFI_HPC_LOCATION **HpcList
);

Parameters
This

Pointer to the EFI_PCI_HOT_PLUG_INIT_PROTOCOL instance.
HpcCount

The number of root HPCs that were returned.
HpcList

The list of root HPCs. HpcCount defines the number of elements in this list. Type
EFI_HPC_LOCATION is defined in "Related Definitions" below.

Description
This procedure returns a list of root HPCs. The PCI bus driver must initialize these controllers
during the boot process. The PCI bus driver may or may not be able to detect these HPCs. If the
platform includes a PCI-to-CardBus bridge, it can be included in this list if it requires initialization.
The HpcList must be self consistent. An HPC cannot control any of its parent buses. Only one
HPC can control a PCI bus. Because this list includes only root HPCs, no HPC in the list can be a
child of another HPC. This policy must be enforced by the
EFI_PCI_HOT_PLUG_INIT_PROTOCOL. The PCI bus driver may not check for such invalid
conditions.
The callee allocates the buffer HpcList.

Related Definitions
//***
// EFI_HPC_LOCATION
//***
typedef struct {
 EFI_DEVICE_PATH_PROTOCOL *HpcDevicePath;
 EFI_DEVICE_PATH_PROTOCOL *HpbDevicePath;
} EFI_HPC_LOCATION;

Hot-Plug PCI Initialization Protocol Specification Draft for Review

22 August 2004 Version 0.9

HpcDevicePath

The device path to the root HPC. An HPC cannot control its parent buses. The PCI
bus driver requires this information so that it can pass the correct HpcPciAddress
to the InitializeRootHpc() and GetResourcePadding() functions.
Type EFI_DEVICE_PATH is defined in LocateDevicePath() in the EFI 1.10
Specification.

HpbDevicePath

The device path to the Hot Plug Bus (HPB) that is controlled by the root HPC. The
PCI bus driver uses this information to check if a particular PCI bus has hot-plug
slots. The device path of a PCI bus is the same as the device path of its parent. For
Standard (PCI) Hot Plug Controllers (SHPCs) and PCI Express*, HpbDevicePath
is the same as HpcDevicePath.

Status Codes Returned
EFI_SUCCESS HpcList was returned.

EFI_OUT_OF_RESOURCES HpcList was not returned due to insufficient resources.

EFI_INVALID_PARAMETER HpcCount is NULL.

EFI_INVALID_PARAMETER HpcList is NULL.

 Draft for Review Code Definitions

Version 0.9 August 2004 23

EFI_PCI_HOT_PLUG_INIT_PROTOCOL.InitializeRootHpc()

Summary
Initializes one root Hot Plug Controller (HPC). This process may causes initialization of its
subordinate buses.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_INITIALIZE_ROOT_HPC) (
 IN EFI_PCI_HOT_PLUG_INIT_PROTOCOL *This,
 IN EFI_DEVICE_PATH_PROTOCOL *HpcDevicePath,
 IN UINT64 HpcPciAddress,
 IN EFI_EVENT Event, OPTIONAL
 OUT EFI_HPC_STATE *HpcState
);

Parameters
This

Pointer to the EFI_PCI_HOT_PLUG_INIT_PROTOCOL instance.
HpcDevicePath

The device path to the HPC that is being initialized. Type EFI_DEVICE_PATH is
defined in LocateDevicePath() in the EFI 1.10 Specification.

HpcPciAddress

The address of the HPC function on the PCI bus.
Event

The event that should be signaled when the HPC initialization is complete. Set to
NULL if the caller wants to wait until the entire initialization process is complete. The
event must be of type EFI_EVENT_NOTIFY_SIGNAL. Type EFI_EVENT is
defined in CreateEvent() in the Intel® Platform Innovation Framework for EFI
Driver Execution Environment Core Interface Specification (DXE CIS).

HpcState

The state of the HPC hardware. The type EFI_HPC_STATE is defined in "Related
Definitions" below.

Description
This function initializes the specified HPC. At the end of initialization, the hot-plug slots or sockets
(controlled by this HPC) are powered and are connected to the bus. All the necessary registers in
the HPC are set up. For a Standard (PCI) Hot Plug Controller (SHPC), the registers that must be set
up are defined in the PCI Standard Hot Plug Controller and Subsystem Specification. For others
HPCs, they are specific to the HPC hardware. The initialization process may choose not to enable
certain PCI Hot Plug* slots or sockets for any reason. The PCI Hot Plug slots or CardBus sockets

Hot-Plug PCI Initialization Protocol Specification Draft for Review

24 August 2004 Version 0.9

that are left disabled at this stage are not available to the system. A PCI slot may be disabled due to
a power fault, PCI bus type mismatch, or power budget constraints. The HPC initialization process
can be time consuming. Powering up the slots that are controlled by SHPCs can take up to 15
seconds. In a system with multiple HPCs, it is desirable to perform these activities in parallel.
Therefore, this procedure supports nonblocking execution mode.
If InitializeRootHpc() is called with a non-NULL event, HPC initialization is considered
complete after the event is signaled. If InitializeRootHpc() is called with a non-NULL
event, a return from InitializeRootHpc() with EFI_SUCCESS marks the completion of the
HPC initialization.
The PCI bus enumerator will call this function for every root HPC that is returned by
GetRootHpcList().
The PCI bus enumerator must make sure that the registers that are required during HPC
initialization are accessible before calling InitializeRootHpc(). The determination of
whether the registers are accessible is based on the following rules:
• For HPCs (legacy HPCs, SHPCs inside a PCI-to-PCI bridge, and PCI Express* HPCs), the PCI

configuration space of the HPC device must be accessible. In other words, all the upstream
bridges including root bridges and special-purpose PCI-to-PCI bridges are programmed to
forward PCI configuration cycles to the HPC.

• SHPCs inside a root bridge are accessible without any initialization of the PCI bus.
• PCI-to-CardBus bridges have their registers mapped into the memory space using a memory

Base Address Register (BAR).
This function takes the device path of the HPC as an input. At the time of HPC initialization, the
PCI bus enumeration is not complete. The PCI bus enumerator may not have created a handle for
the HPC and the hot-plug initialization code cannot use the EFI_PCI_IO_PROTOCOL or
EFI_DEVICE_PATH_PROTOCOL like other PCI device drivers. The device path uniquely
identifies the HPC and also the PCI bus that it controls.
If the HPC is a PCI device, the hot-plug initialization code may need its address on the PCI bus
(EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_PCI_ADDRESS; see Table 12-1 in the EFI 1.10
Specification for its definition) to access its registers. The PCI address of a regular PCI device is
dynamic but is known to the PCI bus driver. Therefore, the PCI bus driver provides it through the
input parameter HpcPciAddress to this function. Passing this address eliminates the need for
InitializeRootHpc() to convert the device path into the PCI address. If the HPC is a
function in a multifunction device, this address is the PCI address of that function. The HPC’s
configuration space must be accessible at the specified HpcPciAddress until the HPC
initialization is complete. In other words, the PCI bus driver cannot renumber PCI buses that are
upstream to the HPC while it is being initialized.
This member function can use the LocateDevicePath() function to locate the appropriate
instance of the EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.
If the Event is not NULL, this function will return control to the caller without completing the
entire initialization. This function must perform some basic checks to make sure that it knows how
to initialize the specified HPC before returning control. The Event is signaled when the
initialization process completes, regardless of whether it results in a failure. The caller must check
HpcState to get the initialization status after the event is signaled.

 Draft for Review Code Definitions

Version 0.9 August 2004 25

If Event is not NULL, it is possible that the Event may be signaled before this function returns.
There are at least two cases where that may happen:
• A simple implementation of EFI_PCI_HOT_PLUG_INIT_PROTOCOL may force the caller

to wait until the initialization is complete. In that case, the InitializeRootHpc()
function may signal the event before it returns control back to the caller.

• The HPC may already have been initialized by the time InitializeRootHpc() is called.
In that case, InitializeRootHpc() will signal Event and return control back to the
caller.

HpcState returns the state of the HPC at the time when control returns. If Event is NULL,
HpcState must indicate that the HPC has completed initialization. If Event is not NULL,
HpcState can indicate that the HPC has not completed initialization when this function returns,
but HpcState must be updated before Event is signaled.
The firmware may not wait until InitializeRootHpc() to start HPC initialization. The
firmware may start the initialization earlier in the boot process and the initialization may be
completely done by the time the PCI bus enumerator calls InitializeRootHpc(). An HPC
can be initialized by hardware alone, and no firmware initialization may be needed. For such HPCs,
this member function does not have to do any real work. In such cases, InitializeRootHpc()
merely acts as a synchronization point.

Related Definitions
//***
// EFI_HPC_STATE
//***
// Describes current state of an HPC

typedef UINT16 EFI_HPC_STATE;

#define EFI_HPC_STATE_INITIALIZED 0x01
#define EFI_HPC_STATE_ENABLED 0x02

Following is a description of the possible states for EFI_HPC_STATE.

0 Not initialized.

EFI_HPC_STATE_INITIALIZED The HPC initialization function was called and the HPC completed
initialization, but it was not enabled for some reason. The HPC may
be disabled in hardware, or it may be disabled due to user
preferences, hardware failure, or other reasons. No resource
padding is required.

EFI_HPC_STATE_INITIALIZED |
EFI_HPC_ENABLED

The HPC initialization function was called, the HPC completed
initialization, and it was enabled. Resource padding is required.

Hot-Plug PCI Initialization Protocol Specification Draft for Review

26 August 2004 Version 0.9

Status Codes Returned
EFI_SUCCESS If Event is NULL, the specific HPC was successfully initialized. If

Event is not NULL, Event will be signaled at a later time when
initialization is complete.

EFI_UNSUPPORTED This instance of EFI_PCI_HOT_PLUG_INIT_PROTOCOL does
not support the specified HPC. If Event is not NULL, it will not be
signaled.

EFI_OUT_OF_RESOURCES Initialization failed due to insufficient resources. If Event is not NULL,
it will not be signaled.

EFI_INVALID_PARAMETER HpcState is NULL.

 Draft for Review Code Definitions

Version 0.9 August 2004 27

EFI_PCI_HOT_PLUG_INIT_PROTOCOL.GetResourcePadding()

Summary
Returns the resource padding that is required by the PCI bus that is controlled by the specified Hot
Plug Controller (HPC).

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_GET_HOT_PLUG_PADDING) (
 IN EFI_PCI_HOT_PLUG_INIT_PROTOCOL *This,
 IN EFI_DEVICE_PATH_PROTOCOL *HpcDevicePath,
 IN UINT64 HpcPciAddress,
 OUT EFI_HPC_STATE *HpcState,
 OUT VOID **Padding,
 OUT EFI_HPC_PADDING_ATTRIBUTES *Attributes
);

Parameters
This

Pointer to the EFI_PCI_HOT_PLUG_INIT_PROTOCOL instance.
HpcDevicePath

The device path to the HPC. Type EFI_DEVICE_PATH is defined in
LocateDevicePath() in the EFI 1.10 Specification.

HpcPciAddress

The address of the HPC function on the PCI bus.
HpcState

The state of the HPC hardware. Type EFI_HPC_STATE is defined in
EFI_PCI_HOT_PLUG_INIT_PROTOCOL.InitializeRootHpc().

Padding

The amount of resource padding that is required by the PCI bus under the control of
the specified HPC. Because the caller does not know the size of this buffer, this
buffer is allocated by the callee and freed by the caller.

Attributes

Describes how padding is accounted for. The padding is returned in the form of ACPI
2.0 resource descriptors. The exact definition of each of the fields is the same as in
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL.SubmitRe
sources() in the Intel® Platform Innovation Framework for EFI PCI Host Bridge
Resource Allocation Protocol Specification. Type
EFI_HPC_PADDING_ATTRIBUTES is defined in "Related Definitions" below.

Hot-Plug PCI Initialization Protocol Specification Draft for Review

28 August 2004 Version 0.9

Description
This function returns the resource padding that is required by the PCI bus that is controlled by the
specified HPC. This member function is called for all the root HPCs and nonroot HPCs that are
detected by the PCI bus enumerator. This function will be called before PCI resource allocation is
completed. This function must be called after all the root HPCs, with the possible exception of a
PCI-to-CardBus bridge, have completed initialization. Waiting until initialization is completed
allows the HPC driver to optimize the padding requirement. The calculation may take into account
the number of empty and/or populated PCI Hot Plug* slots, the number of PCI-to-PCI bridges
among the populated slots, and other factors. This information is available only after initialization is
complete. PCI-to-CardBus bridges require memory resources before the initialization is started and
therefore are considered an exception. The padding requirements are relatively constant for PCI-to-
CardBus bridges and an estimated value must be returned.
If InitializeRootHpc() is called with a non-NULL event, HPC initialization is considered
complete after the event is signaled. If InitializeRootHpc() is called with a non-NULL
event, a return from InitializeRootHpc() with EFI_SUCCESS marks the completion of
HPC initialization.
The input parameters HpcDevicePath, HpcPciAddress, and HpcState are described in
EFI_PCI_HOT_PLUG_INIT_PROTOCOL.InitializeRootHpc(). The value of
HpcPciAddress for the same root HPC may be different from what was passed to
InitializeRootHpc(). The HPC’s configuration space must be accessible at the specified
HpcPciAddress until this function returns control.
The padding is returned in the form of ACPI 2.0 resource descriptors. The exact definition of each
of the fields is the same as in the
EFI_PCI_HOST_BRIDGE_RESOURCE_ALLOCATION_PROTOCOL.SubmitResources()
function. See the Intel® Platform Innovation Framework for EFI PCI Host Bridge Resource
Allocation Protocol Specification for the definition of this function.
The PCI bus driver is responsible for adding this resource request to the resource requests by the
physical PCI devices. If Attributes is EfiPaddingPciBus, the padding takes effect at the
PCI bus level. If Attributes is EfiPaddingPciRootBridge, the required padding takes
effect at the root bridge level. For details, see the definition of
EFI_HPC_PADDING_ATTRIBUTES in "Related Definitions" below.
Note that the padding request cannot ask for specific legacy resources such as COM port addresses.
Legacy PC Card devices may require such resources. Supporting these resource requirements is
outside the scope of this specification.

 Draft for Review Code Definitions

Version 0.9 August 2004 29

Related Definitions
//***
// EFI_HPC_PADDING_ATTRIBUTES
//***
// Describes how resource padding should be applied

typedef enum {
 EfiPaddingPciBus,
 EfiPaddingPciRootBridge
} EFI_HPC_PADDING_ATTRIBUTES;

Following is a description of the fields in the above definition.

EfiPaddingPciBus Apply the padding at a PCI bus level. In other words, the resources

that are allocated to the bus containing hot-plug slots are padded by
the specified amount. If the hot-plug bus is behind a PCI-to-PCI
bridge, the PCI-to-PCI bridge apertures will indicate the padding.

EfiPaddingPciRootBridge Apply the padding at a PCI root bridge level. If a PCI root bridge
includes more than one hot-plug bus, the resource padding requests
for these buses are added together and the resources that are
allocated to the root bridge are padded by the specified amount.
This strategy may reduce the total amount of padding, but requires
reprogramming of PCI-to-PCI bridges in a hot-add event. If the hot-
plug bus is behind a PCI-to-PCI bridge, the PCI-to-PCI bridge
apertures do not indicate the padding for that bus.

Status Codes Returned
EFI_SUCCESS The resource padding was successfully returned.

EFI_UNSUPPORTED This instance of the EFI_PCI_HOT_PLUG_INIT_PROTOCOL
does not support the specified HPC.

EFI_NOT_READY This function was called before HPC initialization is complete.

EFI_INVALID_PARAMETER HpcState is NULL.

EFI_INVALID_PARAMETER Padding is NULL.

EFI_INVALID_PARAMETER Attributes is NULL.

EFI_OUT_OF_RESOURCES

ACPI 2.0 resource descriptors for Padding cannot be allocated due to
insufficient resources.

	Intel® Platform Innovation Framework for EFI Hot-Plug PCI Initialization Protocol Specification
	Disclaimer
	Revision History
	Contents
	1 Introduction
	Overview
	Conventions Used in This Document
	Data Structure Descriptions
	Protocol Descriptions
	Procedure Descriptions
	Pseudo-Code Conventions
	Typographic Conventions

	2 Design Discussion
	Hot-Plug PCI Initialization Protocol Introduction
	Hot-Plug PCI Initialization Protocol Terms
	Hot-Plug PCI Initialization Protocol Related Information
	Requirements
	Sample Implementation for a Platform Containing PCI Hot Plug

	3 Code Definitions
	Introduction
	Hot-Plug PCI Initialization Protocol
	EFI_PCI_HOT_PLUG_INIT_PROTOCOL
	EFI_PCI_HOT_PLUG_INIT_PROTOCOL.GetRootHpcList()
	EFI_PCI_HOT_PLUG_INIT_PROTOCOL.InitializeRootHpc()
	EFI_PCI_HOT_PLUG_INIT_PROTOCOL.GetResourcePadding()

