
 Draft for Review

Intel® Platform Innovation Framework
for EFI

SMBus PPI Specification

Draft for Review

Version 0.9
April 1, 2004

SMBus PPI Specification Draft for Review

ii April 2004 Version 0.9

THIS SPECIFICATION IS PROVIDED "AS IS" WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY
OF MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY
OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR SAMPLE. Except for a limited copyright license
to copy this specification for internal use only, no license, express or implied, by estoppel or otherwise, to any intellectual
property rights is granted herein.

Intel disclaims all liability, including liability for infringement of any proprietary rights, relating to implementation of information
in this specification. Intel does not warrant or represent that such implementation(s) will not infringe such rights.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined."
Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising
from future changes to them.

This document is an intermediate draft for comment only and is subject to change without notice. Readers should not design
products based on this document.

Intel, the Intel logo, and Itanium are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United
States and other countries.

* Other names and brands may be claimed as the property of others.

Copyright © 2001–2004, Intel Corporation.

Intel order number xxxxxx-001

 Draft for Review

Version 0.9 April 2004 iii

Revision History
Revision Revision History Date

0.9 First public release. 4/1/04

SMBus PPI Specification Draft for Review

iv April 2004 Version 0.9

 Draft for Review

Version 0.9 April 2004 v

Contents

1 Introduction .. 7
Overview ... 7
Conventions Used in This Document.. 7

Data Structure Descriptions ... 7
Procedure Descriptions.. 8
PPI Descriptions... 8
Pseudo-Code Conventions .. 9
Typographic Conventions... 9

2 Design Discussion ... 11
Introduction ... 11
Target Audience.. 11
Related Information... 11
SMBus PPI Terms... 12
PEI SMBus PPI Overview... 13

3 Code Definitions... 15
Introduction ... 15
PEI SMBus PPI ... 16

EFI_PEI_SMBUS_PPI ... 16
EFI_PEI_SMBUS_PPI.Execute() ... 17
EFI_PEI_SMBUS_PPI.ArpDevice() ... 20
EFI_PEI_SMBUS_PPI.GetArpMap().. 23
EFI_PEI_SMBUS_PPI.Notify()... 25

SMBus PPI Specification Draft for Review

vi April 2004 Version 0.9

 Draft for Review

Version 0.9 April 2004 7

1
Introduction

Overview
This specification defines the core code and services that are required for an implementation of the
System Management Bus (SMBus) PEIM-to-PEIM Interface (PPI) of the Intel® Platform
Innovation Framework for EFI (hereafter referred to as the "Framework"). This PPI is used by other
Pre-EFI Initialization Modules (PEIMs) to control an SMBus host controller.
This specification does the following:
• Describes the basic components of the PEI SMBus PPI
• Provides code definitions for the PEI SMBus PPI and SMBus-related type definitions that are

architecturally required by the Intel® Platform Innovation Framework for EFI Architecture
Specification

Conventions Used in This Document
This document uses the typographic and illustrative conventions described below.

Data Structure Descriptions
Intel® processors based on 32-bit Intel® architecture (IA-32) are “little endian” machines. This
distinction means that the low-order byte of a multibyte data item in memory is at the lowest
address, while the high-order byte is at the highest address. Processors of the Intel® Itanium®
processor family may be configured for both “little endian” and “big endian” operation. All
implementations designed to conform to this specification will use “little endian” operation.
In some memory layout descriptions, certain fields are marked reserved. Software must initialize
such fields to zero and ignore them when read. On an update operation, software must preserve
any reserved field.
The data structures described in this document generally have the following format:

STRUCTURE NAME: The formal name of the data structure.

Summary: A brief description of the data structure.

Prototype: A “C-style” type declaration for the data structure.

Parameters: A brief description of each field in the data structure prototype.

Description: A description of the functionality provided by the data structure,
including any limitations and caveats of which the caller should
be aware.

Related Definitions: The type declarations and constants that are used only by
this data structure.

SMBus PPI Specification Draft for Review

8 April 2004 Version 0.9

Procedure Descriptions
The procedures described in this document generally have the following format:

ProcedureName(): The formal name of the procedure.

Summary: A brief description of the procedure.

Prototype: A “C-style” procedure header defining the calling sequence.

Parameters: A brief description of each field in the procedure prototype.

Description: A description of the functionality provided by the interface,
including any limitations and caveats of which the caller should
be aware.

Related Definitions: The type declarations and constants that are used only by
this procedure.

Status Codes Returned: A description of any codes returned by the interface. The
procedure is required to implement any status codes listed in this
table. Additional error codes may be returned, but they will not
be tested by standard compliance tests, and any software that
uses the procedure cannot depend on any of the extended error
codes that an implementation may provide.

PPI Descriptions
A PEIM-to-PEIM Interface (PPI) description generally has the following format:

PPI Name: The formal name of the PPI.

Summary: A brief description of the PPI.

GUID: The 128-bit Globally Unique Identifier (GUID) for the PPI.

Protocol Interface Structure: A “C-style” procedure template defining the PPI calling
structure.

Parameters: A brief description of each field in the PPI structure.

Description: A description of the functionality provided by the interface,
including any limitations and caveats of which the caller
should be aware.

Related Definitions: The type declarations and constants that are used only by
this interface.

Status Codes Returned: A description of any codes returned by the interface. The PPI
is required to implement any status codes listed in this table.
Additional error codes may be returned, but they will not be
tested by standard compliance tests, and any software that uses
the procedure cannot depend on any of the extended error codes
that an implementation may provide.

 Draft for Review Introduction

Version 0.9 April 2004 9

Pseudo-Code Conventions
Pseudo code is presented to describe algorithms in a more concise form. None of the algorithms in
this document are intended to be compiled directly. The code is presented at a level corresponding
to the surrounding text.
In describing variables, a list is an unordered collection of homogeneous objects. A queue is an
ordered list of homogeneous objects. Unless otherwise noted, the ordering is assumed to be First In
First Out (FIFO).
Pseudo code is presented in a C-like format, using C conventions where appropriate. The coding
style, particularly the indentation style, is used for readability and does not necessarily comply with
an implementation of the Extensible Firmware Interface Specification.

Typographic Conventions
This document uses the typographic and illustrative conventions described below:
Plain text The normal text typeface is used for the vast majority of the descriptive

text in a specification.
Plain text (blue) In the online help version of this specification, any plain text that is

underlined and in blue indicates an active link to the cross-reference.
Click on the word to follow the hyperlink. Note that these links are not
active in the PDF of the specification.

Bold In text, a Bold typeface identifies a processor register name. In other
instances, a Bold typeface can be used as a running head within a
paragraph.

Italic In text, an Italic typeface can be used as emphasis to introduce a new
term or to indicate a manual or specification name.

BOLD Monospace Computer code, example code segments, and all prototype code
segments use a BOLD Monospace typeface with a dark red color.
These code listings normally appear in one or more separate paragraphs,
though words or segments can also be embedded in a normal text
paragraph.

Bold Monospace In the online help version of this specification, words in a
Bold Monospace typeface that is underlined and in blue indicate an
active hyperlink to the code definition for that function or type definition.
 Click on the word to follow the hyperlink. Note that these links are not
active in the PDF of the specification. Also, these inactive links in the
PDF may instead have a Bold Monospace appearance that is
underlined but in dark red. Again, these links are not active in the PDF of
the specification.

Italic Monospace In code or in text, words in Italic Monospace indicate placeholder
names for variable information that must be supplied (i.e., arguments).

Plain Monospace In code, words in a Plain Monospace typeface that is a dark red
color but is not bold or italicized indicate pseudo code or example code.
These code segments typically occur in one or more separate paragraphs.

SMBus PPI Specification Draft for Review

10 April 2004 Version 0.9

text text text In the PDF of this specification, text that is highlighted in yellow
indicates that a change was made to that text since the previous revision
of the PDF. The highlighting indicates only that a change was made
since the previous version; it does not specify what changed. If text was
deleted and thus cannot be highlighted, a note in red and highlighted in
yellow (that looks like (Note: text text text.)) appears where the deletion
occurred.

See the master Framework glossary in the Framework Interoperability and Component
Specifications help system for definitions of terms and abbreviations that are used in this document
or that might be useful in understanding the descriptions presented in this document.
See the master Framework references in the Interoperability and Component Specifications help
system for a complete list of the additional documents and specifications that are required or
suggested for interpreting the information presented in this document.
The Framework Interoperability and Component Specifications help system is available at the
following URL:
http://www.intel.com/technology/framework/spec.htm

http://www.intel.com/technology/framework/spec.htm

 Draft for Review

Version 0.9 April 2004 11

2
Design Discussion

Introduction
This document describes the System Management Bus (SMBus) PEIM-to-PEIM Interface (PPI).
This document provides enough material to implement an SMBus Pre-EFI Initialization Module
(PEIM) that can control transactions between an SMBus host controller and its slave devices.
The material that is contained in this document is designed to extend the Intel® Platform
Innovation Framework for EFI Architecture Specification in a way that supports communication
via the SMBus. These extensions are provided in the form of SMBus-specific protocols. This
document provides the information that is required to implement an SMBus PEIM in the Pre-EFI
Initialization (PEI) portion of system firmware.
A full understanding of the EFI Specification and the SMBus Specification is assumed throughout
this document. See Related Information for the URL for the SMBus Specification.

Target Audience
This document is intended for the following readers:
• Original equipment manufacturers (OEMs) who will be creating Intel® architecture-based

platforms that are intended to boot shrink-wrap operating systems.
• BIOS developers, either those who create general-purpose BIOS and other firmware products,

or those who modify these products for use in Intel architecture-based products.
• Operating system developers who will be creating and/or adapting their shrink-wrap operating

system products to run on Intel architecture-based platforms.

Related Information
The following publications and sources of information may be useful to you or are referred to by
this specification. See Related Information from Intel in the master Framework help system for the
URLs for EFI specifications and other documentation from Intel.

Industry Specifications
• System Management Bus (SMBus) Specification, version 2.0, SBS Implementer's Forum,

August 3, 2000:
http://www.smbus.org*

• PCI Local Bus Specification, revision 2.2, PCI Special Interest Group: See Industry
Specifications in the master Framework help system for the URL for specifications from the
PCI SIG.

SMBus PPI Specification Draft for Review

12 April 2004 Version 0.9

SMBus PPI Terms
The following terms are used throughout this document to describe the model for constructing
SMBus PPIs in the PEI environment. See the Glossary in the master Framework help system for
explanations of Framework-specific terms.

PEC
Packet Error Code. It is similar to a checksum data of the data coming across the SMBus
wire.

PEI
Pre-EFI Initialization.

PEIM
Pre-EFI Initialization Module.

PPI
PEIM-to-PEIM Interface.

SMBus
System Management Bus.

SMBus host controller
Provides a mechanism for the processor to initiate communications with SMBus slave
devices. This controller can be connected to a main I/O bus such as PCI.

SMBus master device
Any device that initiates SMBus transactions and drives the clock.

SMBus PPI
A software interface that provides a method to control an SMBus host controller and access
the data of the SMBus slave devices that are attached to it.

SMBus slave device
The target of an SMBus transaction, which is driven by some master.

UDID
Unique Device Identifier. A 128-bit value that a device uses during the Address Resolution
Protocol (ARP) process to uniquely identify itself.

 Draft for Review Design Discussion

Version 0.9 April 2004 13

PEI SMBus PPI Overview
The PEI SMBus PPI is used by code, typically other PEIMs, that is running in the PEI environment
to access data on an SMBus slave device via the SMBus host controller. In particular, functions for
managing devices on SMBus buses are defined in this specification.
The interfaces that are provided in the EFI_PEI_SMBUS_PPI are for performing basic operations
to an SMBus slave device. The system provides abstracted access to basic system resources to
allow a PEIM to have a programmatic method to access these basic system resources. The main
goal of this PPI is to provide an abstraction that simplifies the writing of PEIMs for SMBus slave
devices. This goal is accomplished by providing a standard interface to the SMBus slave devices
that does not require detailed knowledge about the particular hardware implementation or protocols
of the SMBus.
See PEI SMBus PPI in Code Definitions for the definition of EFI_PEI_SMBUS_PPI. This PPI is
produced by each of the SMBus host controllers in the system.

SMBus PPI Specification Draft for Review

14 April 2004 Version 0.9

 Draft for Review

Version 0.9 April 2004 15

3
Code Definitions

Introduction
This section contains the basic definitions for PEIMs and SMBus devices to use during the PEI
phase. The following PPI is defined in this section:
• EFI_PEI_SMBUS_PPI
This section also contains the definitions for additional SMBus-related data types and structures
that are subordinate to the structures in which they are called. All of the data structures below
except for EFI_PEI_SMBUS_NOTIFY_FUNCTION can be used in the DXE phase as well. The
following types or structures can be found in "Related Definitions" of the parent function
definition:
• EFI_SMBUS_DEVICE_ADDRESS
• EFI_SMBUS_DEVICE_COMMAND
• EFI_SMBUS_OPERATION
• EFI_SMBUS_UDID
• EFI_SMBUS_DEVICE_MAP
• EFI_PEI_SMBUS_NOTIFY_FUNCTION

SMBus PPI Specification Draft for Review

16 April 2004 Version 0.9

PEI SMBus PPI

EFI_PEI_SMBUS_PPI

Summary
Provides the basic I/O interfaces that a PEIM uses to access its SMBus controller and the slave
devices attached to it.

GUID
#define EFI_PEI_SMBUS_PPI_GUID \
{ 0xabd42895, 0x78cf, 0x4872, 0x84, 0x44, 0x1b, 0x5c, \
0x18, 0x0b, 0xfb, 0xda }

PPI Interface Structure
typedef struct _EFI_PEI_SMBUS_PPI {
 EFI_PEI_SMBUS_PPI_EXECUTE_OPERATION Execute;
 EFI_PEI_SMBUS_PPI_ARP_DEVICE ArpDevice;
 EFI_PEI_SMBUS_PPI_GET_ARP_MAP GetArpMap;
 EFI_PEI_SMBUS_PPI_NOTIFY Notify;
} EFI_PEI_SMBUS_PPI;

Parameters
Execute

Executes the SMBus operation to an SMBus slave device. See the Execute()
function description.

ArpDevice

Allows an SMBus 2.0 device(s) to be Address Resolution Protocol (ARP). See the
ArpDevice() function description.

GetArpMap

Allows a PEIM to retrieve the address that was allocated by the SMBus host
controller during enumeration/ARP. See the GetArpMap() function description.

Notify

Allows a driver to register for a callback to the SMBus host controller driver when
the bus issues a notification to the bus controller PEIM. See the Notify() function
description.

Description
The EFI_PEI_SMBUS_PPI provides the basic I/O interfaces that are used to abstract accesses to
SMBus host controllers. There is one EFI_PEI_SMBUS_PPI instance for each SMBus host
controller in a system. A PEIM that wishes to manage an SMBus slave device in a system will have
to retrieve the EFI_PEI_SMBUS_PPI instance that is associated with its SMBus host controller.

 Draft for Review Code Definitions

Version 0.9 April 2004 17

EFI_PEI_SMBUS_PPI.Execute()

Summary
Executes an SMBus operation to an SMBus controller. Returns when either the command has been
executed or an error is encountered in doing the operation.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_SMBUS_PPI_EXECUTE_OPERATION) (
 IN EFI_PEI_SERVICES **PeiServices,
 IN EFI_PEI_SMBUS_PPI *This,
 IN EFI_SMBUS_DEVICE_ADDRESS SlaveAddress,
 IN EFI_SMBUS_DEVICE_COMMAND Command,
 IN EFI_SMBUS_OPERATION Operation,
 IN BOOLEAN PecCheck,
 IN OUT UINTN *Length,
 IN OUT VOID *Buffer
);

Parameters
PeiServices

A pointer to the system PEI Services Table. Type EFI_PEI_SERVICES is defined
in the Intel® Platform Innovation Framework for EFI Pre-EFI Initialization Core
Interface Specification (PEI CIS).

This

A pointer to the EFI_PEI_SMBUS_PPI instance.
SlaveAddress

The SMBUS hardware address to which the SMBUS device is preassigned or
allocated. Type EFI_SMBUS_DEVICE_ADDRESS is defined in "Related
Definitions" below.

Command

This command is transmitted by the SMBus host controller to the SMBus slave
device and the interpretation is SMBus slave device specific. It can mean the offset to
a list of functions inside an SMBus slave device. Not all operations or slave devices
support this command's registers. Type EFI_SMBUS_DEVICE_COMMAND is
defined in "Related Definitions" below.

Operation

Signifies which particular SMBus hardware protocol instance that it will use to
execute the SMBus transactions. This SMBus hardware protocol is defined by the
SMBus Specification and is not related to EFI. Type EFI_SMBUS_OPERATION is
defined in "Related Definitions" below.

SMBus PPI Specification Draft for Review

18 April 2004 Version 0.9

PecCheck

Defines if Packet Error Code (PEC) checking is required for this operation.
Length

Signifies the number of bytes that this operation will do. The maximum number of
bytes can be revision specific and operation specific. This parameter will contain the
actual number of bytes that are executed for this operation. Not all operations require
this argument.

Buffer

Contains the value of data to execute to the SMBus slave device. Not all operations
require this argument. The length of this buffer is identified by Length.

Description
The Execute() function provides a standard way to execute an operation as defined in the
System Management Bus (SMBus) Specification. The resulting transaction will be either that the
SMBus slave devices accept this transaction or that this function returns with error.

Related Definitions
//***
// EFI_SMBUS_DEVICE_ADDRESS
//***
typedef struct _EFI_SMBUS_DEVICE_ADDRESS {
 UINTN SmbusDeviceAddress:7;
} EFI_SMBUS_DEVICE_ADDRESS;

SmbusDeviceAddress

The SMBUS hardware address to which the SMBUS device is preassigned or
allocated.

//***
// EFI_SMBUS_DEVICE_COMMAND
//***
typedef UINTN EFI_SMBUS_DEVICE_COMMAND;

 Draft for Review Code Definitions

Version 0.9 April 2004 19

//***
// EFI_SMBUS_OPERATION
//***
typedef enum _EFI_SMBUS_OPERATION {
 EfiSmbusQuickRead,
 EfiSmbusQuickWrite,
 EfiSmbusReceiveByte,
 EfiSmbusSendByte,
 EfiSmbusReadByte,
 EfiSmbusWriteByte,
 EfiSmbusReadWord,
 EfiSmbusWriteWord,
 EfiSmbusReadBlock,
 EfiSmbusWriteBlock,
 EfiSmbusProcessCall,
 EfiSmbusBWBRProcessCall
} EFI_SMBUS_OPERATION;

See the SMBus Specification for descriptions of the fields in the above definition.

Status Codes Returned
EFI_SUCCESS The last data that was returned from the access matched the poll exit

criteria.

EFI_CRC_ERROR The checksum is not correct (PEC is incorrect)

EFI_TIMEOUT Timeout expired before the operation was completed. Timeout is
determined by the SMBus host controller device.

EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources.

EFI_DEVICE_ERROR The request was not completed because a failure reflected in the Host
Status Register bit. Device errors are a result of a transaction collision,
illegal command field, unclaimed cycle (host initiated), or bus errors
(collisions).

EFI_INVALID_PARAMETER Operation is not defined in EFI_SMBUS_OPERATION.

EFI_INVALID_PARAMETER Length/Buffer is NULL for operations except for
EfiSmbusQuickRead and EfiSmbusQuickWrite.
Length is outside the range of valid values.

EFI_UNSUPPORTED The SMBus operation or PEC is not supported.

EFI_BUFFER_TOO_SMALL Buffer is not sufficient for this operation.

SMBus PPI Specification Draft for Review

20 April 2004 Version 0.9

EFI_PEI_SMBUS_PPI.ArpDevice()

Summary
Sets the SMBus slave device addresses for the device with a given unique ID or enumerates the
entire bus.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_SMBUS_PPI_ARP_DEVICE) (
 IN EFI_PEI_SERVICES **PeiServices,
 IN EFI_PEI_SMBUS_PPI *This,
 IN BOOLEAN ArpAll,
 IN EFI_SMBUS_UDID *SmbusUdid, OPTIONAL
 IN OUT EFI_SMBUS_DEVICE_ADDRESS *SlaveAddress OPTIONAL
);

Parameters
PeiServices

A pointer to the system PEI Services Table. Type EFI_PEI_SERVICES is defined
in the Intel® Platform Innovation Framework for EFI Pre-EFI Initialization Core
Interface Specification (PEI CIS).

This

A pointer to the EFI_PEI_SMBUS_PPI instance.
ArpAll

A Boolean expression that indicates if the host drivers need to enumerate all the
devices or enumerate only the device that is identified by SmbusUdid. If ArpAll
is TRUE, SmbusUdid and SlaveAddress are optional. If ArpAll is FALSE,
ArpDevice will enumerate SmbusUdid and the address will be at
SlaveAddress.

SmbusUdid

The targeted SMBus Unique Device Identifier (UDID). The UDID may not exist for
SMBus devices with fixed addresses. Type EFI_SMBUS_UDID is defined in
"Related Definitions" below.

SlaveAddress

The new SMBus address for the slave device for which the operation is targeted.
Type EFI_SMBUS_DEVICE_ADDRESS is defined in
EFI_PEI_SMBUS_PPI.Execute().

 Draft for Review Code Definitions

Version 0.9 April 2004 21

Description
The ArpDevice() function enumerates the entire bus or enumerates a specific device that is
identified by SmbusUdid.

Related Definitions
//***
// EFI_SMBUS_UDID
//***
typedef struct _EFI_SMBUS_UDID {
 UINT32 VendorSpecificId;
 UINT16 SubsystemDeviceId;
 UINT16 SubsystemVendorId;
 UINT16 Interface;
 UINT16 DeviceId;
 UINT16 VendorId;
 UINT8 VendorRevision;
 UINT8 DeviceCapabilities;
} EFI_SMBUS_UDID;

VendorSpecificId

A unique number per device.
SubsystemDeviceId

Identifies a specific interface, implementation, or device. The subsystem ID is
defined by the party that is identified by the SubsystemVendorId field.

SubsystemVendorId

This field may hold a value that is derived from any of several sources:
• The device manufacturer’s ID as assigned by the SBS Implementer's Forum or

the PCI SIG.
• The device OEM’s ID as assigned by the SBS Implementer's Forum or the PCI

SIG.
• A value that, in combination with the SubsystemDeviceId, can be used to

identify an organization or industry group that has defined a particular common
device interface specification.

Interface

Identifies the protocol layer interfaces that are supported over the SMBus connection
by the device. For example, Alert Standard Format (ASF) and IPMI.

DeviceId

The device ID as assigned by the device manufacturer (identified by the VendorId
field).

SMBus PPI Specification Draft for Review

22 April 2004 Version 0.9

VendorId

The device manufacturer’s ID as assigned by the SBS Implementer's Forum or the
PCI SIG.

VendorRevision

UDID version number and a silicon revision identification.
DeviceCapabilities

Describes the device’s capabilities.

Status Codes Returned
EFI_SUCCESS The SMBus slave device address was set.

EFI_INVALID_PARAMETER SlaveAddress is NULL.

EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources.

EFI_TIMEOUT The SMBus slave device did not respond.

EFI_DEVICE_ERROR The request was not completed because the transaction failed.
Device errors are a result of a transaction collision, illegal command
field, or unclaimed cycle (host initiated).

 Draft for Review Code Definitions

Version 0.9 April 2004 23

EFI_PEI_SMBUS_PPI.GetArpMap()

Summary
Returns a pointer to the Address Resolution Protocol (ARP) map that contains the ID/address pair
of the slave devices that were enumerated by the SMBus host controller driver.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_SMBUS_PPI_GET_ARP_MAP) (
 IN EFI_PEI_SERVICES **PeiServices,
 IN EFI_PEI_SMBUS_PPI *This,
 IN OUT UINTN *Length,
 IN OUT EFI_SMBUS_DEVICE_MAP **SmbusDeviceMap
);

Parameters
PeiServices

A pointer to the system PEI Services Table. Type EFI_PEI_SERVICES is defined
in the Intel® Platform Innovation Framework for EFI Pre-EFI Initialization Core
Interface Specification (PEI CIS).

This

A pointer to the EFI_PEI_SMBUS_PPI instance.
Length

Size of the buffer that contains the SMBus device map.
SmbusDeviceMap

The pointer to the device map as enumerated by the SMBus controller driver. Type
EFI_SMBUS_DEVICE_MAP is defined in "Related Definitions" below.

Description
The GetArpMap() function returns the mapping of all the SMBus devices that are enumerated by
the SMBus host driver.

Related Definitions
//***
// EFI_SMBUS_DEVICE_MAP
//***
typedef struct _EFI_SMBUS_DEVICE_MAP {
 EFI_SMBUS_DEVICE_ADDRESS SmbusDeviceAddress;
 EFI_SMBUS_UDID SmbusDeviceUdid;
} EFI_SMBUS_DEVICE_MAP;

SMBus PPI Specification Draft for Review

24 April 2004 Version 0.9

SmbusDeviceAddress

The SMBUS hardware address to which the SMBUS device is preassigned or
allocated. Type EFI_SMBUS_DEVICE_ADDRESS is defined in
EFI_PEI_SMBUS_PPI.Execute().

SmbusDeviceUdid

The SMBUS Unique Device Identifier (UDID) as defined in EFI_SMBUS_UDID.
Type EFI_SMBUS_UDID is defined in EFI_PEI_SMBUS_PPI.ArpDevice().

Status Codes Returned
EFI_SUCCESS The device map was returned correctly in the buffer.

 Draft for Review Code Definitions

Version 0.9 April 2004 25

EFI_PEI_SMBUS_PPI.Notify()

Summary
Allows a device driver to register for a callback when the bus driver detects a state that it needs to
propagate to other PEIMs that are registered for a callback.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_SMBUS_PPI_NOTIFY) (
 IN EFI_PEI_SERVICES **PeiServices,
 IN EFI_PEI_SMBUS_PPI *This,
 IN EFI_SMBUS_DEVICE_ADDRESS SlaveAddress,
 IN UINTN Data,
 IN EFI_PEI_SMBUS_NOTIFY_FUNCTION NotifyFunction
);

Parameters
PeiServices

A pointer to the system PEI Services Table. Type EFI_PEI_SERVICES is defined
in the Intel® Platform Innovation Framework for EFI Pre-EFI Initialization Core
Interface Specification (PEI CIS).

This

A pointer to the EFI_PEI_SMBUS_PPI instance.
SlaveAddress

Address that the host controller detects as sending a message and calls all the
registered functions. Type EFI_SMBUS_DEVICE_ADDRESS is defined in
EFI_PEI_SMBUS_PPI.Execute().

Data

Data that the host controller detects as sending a message and calls all the registered
functions.

NotifyFunction

The function to call when the bus driver detects the SlaveAddress and Data
pair. Type EFI_PEI_SMBUS_NOTIFY_FUNCTION is defined in "Related
Definitions" below.

Description
The Notify() function registers all the callback functions to allow the bus driver to call these
functions when the SlaveAddress/Data pair happens.

SMBus PPI Specification Draft for Review

26 April 2004 Version 0.9

Related Definitions
//***
// EFI_PEI_SMBUS_NOTIFY_FUNCTION
//***
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_SMBUS_NOTIFY_FUNCTION) (
 IN EFI_PEI_SERVICES **PeiServices,
 IN EFI_PEI_SMBUS_PPI *SmbusPpi,
 IN EFI_SMBUS_DEVICE_ADDRESS SlaveAddress,
 IN UINTN Data
);

PeiServices

A pointer to the system PEI Services Table. Type EFI_PEI_SERVICES is defined
in the Intel® Platform Innovation Framework for EFI Pre-EFI Initialization Core
Interface Specification (PEI CIS).

SmbusPpi

A pointer to the EFI_PEI_SMBUS_PPI instance.
SlaveAddress

The SMBUS hardware address to which the SMBUS device is preassigned or
allocated. Type EFI_SMBUS_DEVICE_ADDRESS is defined in
EFI_PEI_SMBUS_PPI.Execute().

Data

Data of the SMBus host notify command that the caller wants to be called.

Status Codes Returned
EFI_SUCCESS NotifyFunction has been registered.

	Intel® Platform Innovation Framework for EFI SMBus PPI Specification
	Disclaimer
	Revision History
	Contents
	1. Introduction
	Overview
	Conventions Used in This Document
	Data Structure Descriptions
	Procedure Descriptions
	PPI Descriptions
	Pseudo-Code Conventions
	Typographic Conventions

	2. Design Discussion
	Introduction
	Target Audience
	Related Information
	SMBus PPI Terms
	PEI SMBus PPI Overview

	3. Code Definitions
	Introduction
	PEI SMBus PPI
	EFI_PEI_SMBUS_PPI
	EFI_PEI_SMBUS_PPI.Execute()
	EFI_PEI_SMBUS_PPI.ArpDevice()
	EFI_PEI_SMBUS_PPI.GetArpMap()
	EFI_PEI_SMBUS_PPI.Notify()

